Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067802    DOI: 10.1088/1674-1056/26/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials

Xue-Lu Liu(刘雪璐)1,2, Xin Zhang(张昕)1,2, Miao-Ling Lin(林妙玲)1,2, Ping-Heng Tan(谭平恒)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  

Angle-resolved polarized Raman (ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials. However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations:1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite (HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of two-dimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.

Keywords:  angle-resolved polarized Raman spectroscopy      anisotropy      two-dimensional materials      edge plane  
Received:  02 March 2017      Revised:  07 April 2017      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.67.Wj (Optical properties of graphene)  
  63.22.Rc (Phonons in graphene)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301204) and the National Natural Science Foundation of China (Grant Nos. 11604326, 11434010, 11474277, and 11225421).

Corresponding Authors:  Ping-Heng Tan     E-mail:  phtan@semi.ac.cn

Cite this article: 

Xue-Lu Liu(刘雪璐), Xin Zhang(张昕), Miao-Ling Lin(林妙玲), Ping-Heng Tan(谭平恒) Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials 2017 Chin. Phys. B 26 067802

[1] Zhang X, Tan Q H, Wu J B, Shi W and Tan P H 2016 Nanoscale 8 6435
[2] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater. 1604468
[3] Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C and Tan P H 2014 Nat. Commun. 5 5309
[4] Lui C H, Ye Z, Keiser C, Barros E B and He R 2015 Appl. Phys. Lett. 106 041904
[5] Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J and Tan P H 2016 Carbon 99 118
[6] Zhao W J, Tan P H, Zhang J and Liu J 2010 Phys. Rev. B 23 245423
[7] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N and Savini G 2012 Nat. Mater. 11 294
[8] Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Phys. Rev. B 87 115413
[9] Ji J T, Zhang A M, Yang R, Tian Y, Jin F, Qiu X G and Zhang Q M 2016 Chin. Phys. B 25 067803
[10] Wei G N, Tan Q H, Dai X, Feng Q, Luo W G, Sheng Y, Wang K, Pan W W, Zhang L Y, Wang S M and Wang K Y 2016 Chin. Phys. B 25 066301
[11] Duesberg G S, Loa I, Burghard M, Syassen K and Roth S 2000 Phys. Rev. Lett. 85 5436
[12] Rao A M, Jorio A, Pimenta M A, Dantas M S, Saito R, Dresselhaus G and Dresselhaus M S 2000 Phys. Rev. Lett. 84 1820
[13] Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H and Wang H 2015 Nano Res. 8 3651
[14] Qiao X F, Wu J B, Zhou L, Qiao J, Shi W, Chen T, Zhang X, Zhang J, Ji W and Tan P H 2016 Nanoscale 88324
[15] Kim J, Lee J U, Lee J, Park H J, Lee Z, Lee C and Cheong H 2015 Nanoscale 7 18708
[16] Huang M, Yan H, Chen C, Song D, Heinz T F and Hone J 2009 Proc. Natl. Acad. Sci. 106 7304
[17] Wang Y L, Cong C X, Qiu C Y and Yu T 2013 Small 9 2857
[18] Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J and Cui Y 2013 Nano Lett. 13 1341
[19] Yu J H, Lee H R, Hong S S, Kong D, Lee H W, Wang H, Xiong F, Wang S and Cui Y 2015 Nano Lett. 15 1031
[20] Cho S Y, Kim S J, Lee Y, Kim J S, Jung W B, Yoo H W, Kim J and Jung H T 2015 ACS Nano 9 9314
[21] Zhai P F, Liu J, Zeng J, Duan J L, Xu L J, Yao H J, Guo H, Zhang S X, Hou M D and Sun Y M 2016 Carbon 101 22
[22] Dai Z H, Wang Y L, Liu L Q, Liu X L, Tan P H, Xu Z P, Kuang J, Liu Q, Lou J and Zhang Z 2016 Adv. Funct. Mater. 26 7003
[23] Ribeiro H B, Pimenta M A, de Matos C J, Moreira R L, Rodin A S, Zapata J D, de Souza E A and Castro Neto A H 2015 ACS Nano 9 4270
[24] Yoon D, Moon H, Son Y W, Samsonidze G, Park B H, Kim J B, Lee Y and Cheong H 2008 Nano Lett. 8 4270
[25] Loudon R 2001 Adv. Phys. 50 813
[26] Jones R C 1941 J. Opt. Soc. Am. 31 488
[27] Mani K K and Ramani R 1974 Phys. Status Solidi B 61 659
[28] Tan P H, Wu J B, Han W P, Zhao W J, Zhang X, Wang H and Wang Y F 2014 Phys. Rev. B 89 235404
[29] Ping J L and Fuhrer M S 2014 J. Appl. Phys. 116 044303
[30] Tan P H, Deng Y M, Zhao Q and Cheng W C 1999 Appl. Phys. Lett. 74 1818
[31] Tan P H, Deng Y M and Zhao Q 1998 Phys. Rev. B 58 5435
[32] Kawashima Y, Katagiri G 1995 Phys. Rev. B 52 10053
[33] Tan P H, An L, Liu L Q, Guo Z X, Czerw R, Carroll D L, Ajayan P M, Zhang N and Guo H L 2002 Phys. Rev. B 66 245410
[34] Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
[35] Jorio A, Souza Filho A G, Brar V W, Swan A K, Unlu M S, Goldberg B B, Righi A, Hafner J H, Lieber C M, Saito R and Dresselhaus G 2002 Phys. Rev. B 65 121402
[36] Liang Q Z, Yao X X, Wang W, Liu Y and Wong C P 2011 ACS Nano 5 2392
[37] Fu X L, Qian J W, Qiao X F, Tan P H and Peng Z J 2014 Opt. Lett. 39 6450
[38] Wu J X, Mao N N, Xie L M, Xu H and Zhang J 2015 Angew. Chem. Int. Ed. 54 2366
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[11] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
No Suggested Reading articles found!