Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057301    DOI: 10.1088/1674-1056/26/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal emission properties of one-dimensional grating with different parameters

Weixin Lin(林伟新)1, Guozhou Li(李国洲)1, Qiang Li(李强)2, Hongjin Hu(胡宏锦)1, Fang Han(韩防)1, Fanwei Zhang(张樊伟)1, Lijun Wu(吴立军)1
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China;
2 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Abstract  

Thermal emission is often presented as a typical incoherent process. Incorporating periodic structures on the tungsten surface offers the possibility to obtain coherent thermal emission sources. Here we illustrate grating as an example to examine the influence of the geometric parameters on the thermal emission properties. It is found that for very shallow gratings, only surface plasmon polariton (SPP) modes can be excited and the emission efficiency is closely related with the filling factor. When the ratio of the depth to period of the grating is in the range from 1/20 to 1/2, the field between the adjacent corners can be coupled to each other across the air gap for the filling factor larger than 0.5 and produce a similar resonance as in an air rod. Further increase of the grating depth can cause the groove of the grating forming metal-insulator-metal (MIM) structures and induce surface plasmon standing wave modes. Our investigations will not only be helpful for manipulating thermal emission properties according to applications, but also help us understand the coupling mechanism between the incident electromagnetism waves and gratings with different parameters in various research fields.

Keywords:  surface plasmon polaritons      thermal emission      grating      surface plasmon standing wave  
Received:  07 November 2016      Revised:  16 December 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  44.40.+a (Thermal radiation)  
  41.50.+h (X-ray beams and x-ray optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61378082 and 61675070) and the Project of High-level Professionals in the Universities of Guangdong Province, China.

Corresponding Authors:  Lijun Wu     E-mail:  ljwu@scnu.edu.cn

Cite this article: 

Weixin Lin(林伟新), Guozhou Li(李国洲), Qiang Li(李强), Hongjin Hu(胡宏锦), Fang Han(韩防), Fanwei Zhang(张樊伟), Lijun Wu(吴立军) Thermal emission properties of one-dimensional grating with different parameters 2017 Chin. Phys. B 26 057301

[1] Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[2] Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290
[3] Martin-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[4] Tong L M and Xu H X 2012 Physics 41 582
[5] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[6] Li X F, Peng W, Zhao Y L, Wang Q and Wei J L 2016 Chin. Phys. B 25 37303
[7] Stockman I 2008 Nat. Photon. 2 327
[8] Huang Z, Koschny Th and Soukoulis C M 2012 Phy. Rev. Lett. 108 187402
[9] Sai H, Kanamori Y and Yugami H 2003 Appl. Phys. Lett. 82 1685
[10] Greffet J J 2011 Nature 478 191
[11] Laroche M, Arnold C, Marquier F, Carminati R, Greffet J J, Collin S, Bardou N and Pelouard J L 2005 Opt. Lett. 30 2623
[12] Huu N N, Chen Y B and Lo Y L 2012 Opt. Express 20 5882
[13] Chen Y B and Zhang Z M 2007 Opt. Commun. 269 411
[14] Han F, Sun X L, Wu L J and Li Q 2013 Opt. Express 21 28570
[15] Arnold C, Marquier F, Garin M, Pardo F, Collin S, Bardou N, Pelouard J L and Greffet J J 2012 Phys. Rev. B 86 035316
[16] Maruyama S, Kashiwa T, Yugami H and Esashi M 2001 Appl. Phys. Lett. 79 1393
[17] Hesketh P J, Zemel J N and Gebhart B 1986 Nature 324 549
[18] Sobnack M B, Tan W C, Wanstall N P, Preist T W and Sambles J R 1998 Phys. Rev. Lett. 80 5667
[19] Klein Koerkamp K J, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[20] Rephaeli E and Fan S 2008 Appl. Phys. Lett. 92 211107
[21] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[22] Hao J M, Zhou L and Qiu M 2011 Phys. Rev. B 83 165107
[23] Fleming J G, Lin S Y, El-Kady I, Biswas R and Ho K M 2002 Nature 417 52
[24] Raether H 2007 Surface Plasmons (Berlin:Springer)
[25] Arthur R D, Vyacheslav V P and Sergei A N 2012 Phys. Rev. Lett. 108 127401
[26] Evgeny P, Nicolas B and Stefan E 2007 Opt. Express 15 4224
[27] Rao W Y, Li Q, Wang Y Z, Li T and Wu L J 2015 Acs Nano 9 2783
[28] Sai H, Kanamori Y, Hane K and Yugami H 2005 J. Opt. Soc. Am. A 9 1805
[29] Zhou J and Guo L J 2014 Sci. Rep. 4 3614
[30] Barnes W L, Preist T W, Kitson S C and Sambles J R 1996 Phys. Rev. B 54 6227
[31] Barnes W L, Kitson S C, Preist T W and Sambles J R 1997 J. Opt. Soc. Am. A 7 1654
[32] Félidj N, Aubard J, Lévi G, Krenn J R, Schider G, Leitner A and Aussenegg F R 2002 Phys. Rev. B 66 245407
[33] Heinzel A, Boerner V, Gombert A, Bläsi B, Wittwer V and Luther J 2000 J. Mod. Opt. 13 2399
[34] Chew W C 1995 Waves and Fields in Inhomogeneous Media (New York: Wiley-IEEE)
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[4] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[5] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[6] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[7] Smith-Purcell radiation improved by multi-grating structure
Jing Shu(舒靖), Ping Zhang(张平), Man Liang(梁满), Sheng-Peng Yang(杨生鹏), Shao-Meng Wang(王少萌), and Yu-Bin Gong(宫玉彬). Chin. Phys. B, 2022, 31(4): 044103.
[8] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[11] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[12] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[13] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[14] Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers
Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰). Chin. Phys. B, 2022, 31(1): 014207.
[15] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
No Suggested Reading articles found!