Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057302    DOI: 10.1088/1674-1056/26/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dielectric loaded surface plasmon polariton properties of the Al2O3-Al nanostructure

Jie Yao(姚洁), Qi Wei(魏琦), Qing-Yu Ma(马青玉), Da-Jian Wu(吴大建)
Jiangsu Key Laboratory on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  

Surface plasmons (SPs) in ultraviolet (UV) have attracted a great deal of attention because of their emerging applications in energy resources, environmental protection, and biotechnology. In this article, the dielectric loaded surface plasmon polariton (DLSPP) properties of the Al2O3-Al nanostructure are investigated theoretically. Sharp SP responses can be obtained in deep UV by setting an insulator grating on the aluminum film. It is found that the height of the grating element, the lattice parameter, and the filling factor can all modulate the DLSPPs of the Al2O3-Al nanostructure. We further find that this structure is sensitive to the embedding medium and can serve as a refractive index sensor in the UV region. The corresponding sensitivity increases with the decrease of the filling factor. The Al2O3-Al nanostructure may be useful for medical diagnostics and biotechnology in deep UV.

Keywords:  surface plasmon      ultraviolet      aluminum      refractive index sensor  
Received:  03 January 2017      Revised:  09 February 2017      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Fx (Diffraction and scattering)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: 

Project by the National Natural Science Foundation of China (Grant Nos. 11674175, 51120125001, and 11474166), the Major Project of Natural Science Research for Colleges and Universities in Jiangsu Province, China (Grant No. 15KJA140002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150562), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China.

Corresponding Authors:  Da-Jian Wu     E-mail:  wudajian@njnu.edu.cn

Cite this article: 

Jie Yao(姚洁), Qi Wei(魏琦), Qing-Yu Ma(马青玉), Da-Jian Wu(吴大建) Dielectric loaded surface plasmon polariton properties of the Al2O3-Al nanostructure 2017 Chin. Phys. B 26 057302

[1] Cui J B, Li Y J, Liu L, Chen L, Xu J, Ma J W, Fang G, Zhu E B, Wu H, Zhao L X, Wang L Y and Huang Y 2015 Nano Lett. 15 6295
[2] Chou Y H, Chou B T, Chiang C K, Lai Y Y, Yang C T, Li H, Lin T R, Lin C C, Kuo H C, Wang S C and Lu T C 2015 ACS Nano 9 3978
[3] Song W, Ji W, Vantasin S, Tanabe I, Zhao B and Ozaki Y 2015 J. Mater. Chem. A 3 13556
[4] Li Z W, Xiao Y D, Gong Y J, Wang Z P, Kang Y M, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158
[5] Li Z W, Han T Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
[6] Liu Z Q, Shao H B, Liu G Q, Liu X S, Zhou H Q, Hu Y, Zhang X N, Cai Z J and Gu G 2014 Appl. Phys. Lett. 104 081116
[7] Bhattarai K, Ku Z H, Silva S, Jeon J, Kim J O, Lee S J, Urbas A and Zhou J F 2015 Adv. Opt. Mater. 3 1779
[8] Canalejas-Tejero V, Herranz S, Bellingham A, Moreno-Bondi M C and Barrios C A 2014 ACS Appl. Mater. Inter. 6 1005
[9] Norek M, Wlodarski M and Matysik P 2014 Curr. Appl. Phys. 14 1514
[10] Cheng L, Huang L Q, Li X, Wu J, Zhang Y, Wang J, Cheng L, Liu Y, Feng X H, Zhang W W and Cai Y K 2015 J. Phys. Chem. C 119 14304
[11] King N S, Liu L F, Yang X, Cerjan B, Everitt H O, Nordlander P and Halas N J 2015 ACS Nano 9 10628
[12] McPeak K M, Engers C D, Bianchi S, Rossinelli A, Poulikakos L V, Bernard L, Herrmann S, Kim D K, Burger S, Blome M, Jayanti S V and Norris D J 2015 Adv. Mater. 27 6244
[13] Knight M W, King N S, Liu L F, Everitt H O, Nordlander P and Halas N J 2014 ACS Nano 8 834
[14] Lee M, Kim J U, Lee K J, Ahn S, Shin Y B, Shin J and Park C B 2015 ACS Nano 9 6206
[15] Jha S K, Ahmed Z, Agio M, Ekinci Y and Loffler J F 2012 J. Am. Chem. Soc. 134 1966
[16] Yuan G, Wang P and Ming Y L H 2009 Opt. Express 17 12594
[17] Fang Z Y, Zhang X J, Liu D and Zhu X 2008 Appl. Phys. Lett. 93 073306
[18] Fang Z Y, Huang S, Lin F and Zhu X 2009 Opt. Express 17 20327
[19] Lin D Z, Chang C K, Chen Y C, Yang D L, Lin M W, Yeh J T, Liu J M, Kuan C H, Yeh C S and Lee C K 2006 Opt. Express 14 3503
[20] Wang Q, Yuan X, Tan P and Zhang D 2008 Opt. Express 16 19271
[21] Le K Q, Abass A, Maes B, Bienstman P and Alu A 2012 Opt. Express 20 A39
[22] Regan C J, Rodriguez R, Gourshetty S C, Peralta L G and Bernussi A A 2012 Opt. Express 20 20827
[23] Nielsen M G, Weeber J C, Hassan K, Fatome J, Finot C, Kaya S, Markey L, Albrektsen O, Bozhevolnyi S I, Millot G and Dereux A 2012 J. Lightwave Technol. 30 3118
[24] Song J C, Jung W K, Kim N H and Byun K M 2012 Opt. Lett. 37 3915
[25] Lu D, Kan J J, Fullerton E E and Liu Z W 2014 Nat. Nanotechnol. 9 48
[26] Palik E D 1998 Handbook of Optical Constants of Solids II (Washington DC: Academic Press) p. 761
[27] Palik E D 1998 Handbook of Optical Constants of Solids I (Washington DC: Academic Press) p. 377
[28] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131
[29] Liu C, Lu Y H, Jiang H Q, Zhang C, Wang P and Ming H 2014 Opt. Commun. 311 55
[30] Lo C C, Hung C H, Yuan C S and Wu J F 2007 Sol. Energ. Mat. Sol. C 91 1765
[31] Keyser M, Muller I A, Cilliers F P, Nel W and Gouws P A 2008 Innov. Food Sci. Emerg. 9 348
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[10] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[11] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[12] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[13] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[14] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[15] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
No Suggested Reading articles found!