Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057103    DOI: 10.1088/1674-1056/26/5/057103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principle study of the structural, electronic, and optical properties of SiC nanowires

Wei-Hu Zhang(张威虎)1, Fu-Chun Zhang(张富春)2, Wei-Bin Zhang(张伟斌)3, Shao-Lin Zhang(张绍林)3, Woochul Yang3
1 Communication and Information Engineering College, Xi'an University of Science and Technology, Xi'an 710068, China;
2 College of Physics and Electronic Information, Yan'an University, Yan'an 716000, China;
3 Department of Physics, Dongguk University, Seoul 100715, Korea
Abstract  We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires (NWs). The dielectric functions dominated by electronic interband transitions are investigated in terms of the calculated optical response functions. The calculated results reveal that the SiC NW is an indirect band-gap semiconductor material except at a minimum SiC NW (n=12) diameter, showing that the NW (n=12) is metallic. Charge density indicates that the Si-C bond of SiC NW has mixed ionic and covalent characteristics: the covalent character is stronger than the ionic character, and shows strong s-p hybrid orbit characteristics. Moreover, the band gap increases as the SiC NW diameter increases. This shows a significant quantum size and surface effect. The optical properties indicate that the obvious dielectric absorption peaks shift towards the high energy, and that there is a blue shift phenomenon in the ultraviolet region. These results show that SiC NW is a promising optoelectronic material for the potential applications in ultraviolet photoelectron devices.
Keywords:  SiC      first-principle calculation      nanowires      electronic structure  
Received:  16 October 2016      Revised:  13 January 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61664008), the Special Research Funds for Discipline Construction of High Level University Project, China (Grant No. 2015SXTS02), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Nos. 2015R1D1A1A01058991 and 2016R1A6A1A03012877).
Corresponding Authors:  Fu-Chun Zhang, Woochul Yang     E-mail:  zhangfuchun72@163.com;wyang@dongguk.edu

Cite this article: 

Wei-Hu Zhang(张威虎), Fu-Chun Zhang(张富春), Wei-Bin Zhang(张伟斌), Shao-Lin Zhang(张绍林), Woochul Yang First-principle study of the structural, electronic, and optical properties of SiC nanowires 2017 Chin. Phys. B 26 057103

[1] Wong E W, Sheehan P E and Lieber C M 1997 Science 277 1971
[2] Prasai D, John W, Weixelbaum L, Krüger O, Wagner G, Sperfeld P, Nowy S, Friedrich D, Winter S and Weiss T 2013 J. Mater. Res. 28 33
[3] Anderson T J, Hobart K D, Greenlee J D, Shahin D I, Koehler A D, Tadjer M J, Imhoff E A, Myers-Ward R L, Christou A and Kub F J 2015 Appl. Phys. Express 8 041301
[4] Gao R X, Gao S Y, Fan G H, Liu J, Wang Q, Zhao H F and Qu S L 2014 Acta Phys. Sin. 63 067801 (in Chinese)
[5] Cheng G M, Chang T H, Qin Q Q, Huang H C and Zhu Y 2014 Nano Lett. 14 754
[6] Liu H T, Huang Z H, Fang M H, LiuY G and Wu X W 2015 J. Cryst. Growth 419 20
[7] Hua Y, Wan H, Chen X Y, Wu P and Bai S X 2016 Acta Phys. Sin. 65 168102 (in Chinese)
[8] Niu J J, Wang J N and Xu N S 2008 Solid State Sci. 10 618
[9] She Q, Jiang M F, Qian N and Pan Y 2014 Acta Phys. Sin. 63 185204 (in Chinese)
[10] Aldalbahi A, Li E, Rivera M, Velazquez R, Altalhi T, Peng X Y and Feng P X 2016 Sci. Rep. 6 23457
[11] Chiew Y L and Cheong K Y 2012 J. Mater. Sci. 47 5477
[12] Yu W, Wang M Z, Xie H Q, Hu Y H and Chen L F 2016 Appl. Therm. Eng. 94 350
[13] Shi W, Zheng Y, Peng H, Wang N, Lee C S and Lee S T 2000 J. Am. Ceram. Soc. 83 3228
[14] Zhou J Y, Chen Z Y, Xu X B, Zhou M, Ma Z W, Zhao J G, Li R S and Xie E Q 2010 J. Amer. Ceram. Soc. 93 488
[15] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X, and Chen X L 2016 Chin. Phys. B 25 067205
[16] Yu W, Wang M Z, Xie H Q, Hu Y H, Chen L F 2016 Appl. Therm. Eng. 94 350
[17] Liu S L, Liu H T, Huang Z H, Fang M H, Liu Y G and Wu X W 2016 RSC Adv. 6 24267
[18] Dai J X, Sha J J, Zhang Z F, Wang Y C and Krenkel W 2015 Ceram. Int. 41 9637
[19] Liu Y S, Men J, Feng W, Cheng L F and Zhang L T 2014 Ceram. Int. 40 11889
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Payne M C, Teter M P, Arias T A, Allan D C and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[22] Kresse G and Hafener J 1994 Phys. Rev. B 49 14251
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[26] Read A J and Needs R J 1991 Phys. Rev. B 44 13071
[27] Lu B, Liu J X, Zhu H W and Jiao X H 2007 Mater. Sci. Forum. 561 1413
[28] Pan H and Feng Y P 2008 ACS Nano 2 2410
[29] Xu Y N and Ching W Y 1993 Phys. Rev. B 48 4335
[30] Wang Z L 2004 Materials Today 7 26
[31] Zou X C, Wu M S, Liu G, Ouyang C Y and Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese)
[32] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[33] Unalan H E, Zhang Y, Hiralal P, Dalal S, Chu D, Eda G, Teo K B K, Chhowalla M and Milne W I 2009 Appl. Phys. Lett. 94 163501
[34] Gao S P and Zhu T 2012 Acta Phys. Sin. 61 137103 (in Chinese)
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[11] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[12] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[13] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[14] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[15] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
No Suggested Reading articles found!