Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057102    DOI: 10.1088/1674-1056/26/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain engineering of electronic and magnetic properties of Ga2S2 nanoribbons

Bao-Ji Wang(王宝基)1, Xiao-Hua Li(李晓华)1, Li-Wei Zhang(张利伟)1, Guo-Dong Wang(王国东)1, San-Huang Ke(柯三黄)2
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 MOE Key Labortoray of Microstructured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  

Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons (Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair- and zigzag-edged NRs (ANRs and ZNRs) with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First, the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct (I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition, the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of (ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution, but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2NRs in nanoelectronics and optoelectronics.

Keywords:  density functional theory      Ga2S2 nanoribbon      electronic and magnetic properties      strain engineering  
Received:  16 December 2016      Revised:  21 February 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Ac (Multilayers)  
  74.20.Pq (Electronic structure calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174220 and 11374226), the Key Scientific Research Project of the Henan Institutions of Higher Learning, China (Grant No. 16A140009), the Program for Innovative Research Team of Henan Polytechnic University, China (Grant Nos. T2015-3 and T2016-2), the Doctoral Foundation of Henan Polytechnic University, China (Grant No. B2015-46), and the High-performance Grid Computing Platform of Henan Polytechnic University, China.

Corresponding Authors:  San-Huang Ke     E-mail:  shke@tongji.edu.cn

Cite this article: 

Bao-Ji Wang(王宝基), Xiao-Hua Li(李晓华), Li-Wei Zhang(张利伟), Guo-Dong Wang(王国东), San-Huang Ke(柯三黄) Strain engineering of electronic and magnetic properties of Ga2S2 nanoribbons 2017 Chin. Phys. B 26 057102

[1] Du A, Smith S C and Lu G 2007 Chem. Phys. Lett. 447 181
[2] Nakamura J, Nitta T and Natori A 2005 Phys. Rev. B 72 205429
[3] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16793
[4] Late D J, Liu B, Luo J, Yan A, Ramakrishna M H S S, Grayson M, Rao C N R and Dravid V P 2012 Adv. Mater. 24 3549
[5] Tang Q and Zhou Z 2013 Progress in Materials Science 111 1244
[6] Tang Q, Zhou Z and Chen Z F 2015 WIREs Comput Mol Sci 5 360
[7] Panda S K, Datta A, Sinha G, Chaudhuri S, Chavan P G, Patil S S, More M A and Joag D S 2008 J. Phys. Chem. C 112 6240
[8] Shen G Z, Chen D, Chen P C and Zhou C W 2009 ACS Nano 3 1115
[9] Zólyomi V, Drummond N D and Fal'ko V I 2013 Phys. Rev. B 87 195403
[10] Zhuang H L and Hennig R G 2013 Chem. Mater. 25 3232
[11] Zhou J 2015 RSC Adv. 5 94679
[12] Wang B J, Li X H, Zhang L W, Wang G D and Ke S H 2016 Chin. Phys. B 25 107100
[13] Huang L, Wu F G and Li J B 2016 J. Chem. Phys. 144 114708
[14] Ji J T, Zhang A M, Xia T L, Gao P, Jie Y H, Zhang Q and Zhang Q M 2016 Chin. Phys. B 25 077802
[15] Rosid N A I C, Ahmadi M T and Ismail R 2016 Chin. Phys. B 25 096802
[16] Huang L, Chen Z H and Li J B 2015 RSC Adv. 5 5788
[17] Ma Y, Dai Y, Guo M, Yu L and Huang B 2013 Phys. Chem. Chem. Phys. 15 7098
[18] Orudzhev G S and Kasumova E K 2014 Physics of the Solid State 56 619
[19] Wei W, Dai Y, Niu C W, Li X, Ma Y D and Huang B B 2015 J. Mater. Chem. C 3 11548
[20] Copple A, Ralston N and Peng X 2012 Appl. Phys. Lett. 100 193108
[21] Peng X and Copple A 2013 Phys. Rev. B 87 115308
[22] Signorello G, LÖrtscher E, Khomyakov P A, Karg S, Dheeraj D L, Gotsmann B, Weman H and Riel H 2014 Nat. Commun. 5 3655
[23] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[24] Zhao H, Min K and Aluru N R 2009 Nano Lett. 9 3012
[25] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[29] Perdew J P and Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Luo W, Roundy D, Cohen M L and Morris J W 2002 Phys. Rev. B 66 094110
[31] Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103
[32] Cheng Y C, Zhu Z Y and Schwingenschlögl U 2012 J. Mater. Chem. 22 24676
[33] Su W S, Wu B R and Leung T C 2011 Comp. Phys. Comm. 182 99
[34] Wu G X, Wang Z Q, Jing Y H and Wang C Y 2013 Chem. Phys. Lett. 559 82
[35] Jing Y H, Sun Y, Niu H W and and Shen J 2013 Phys. Status Solidi B 250 1505
[36] Su J, Feng L P, Pana H X, Lu H C and Liua Z T 2016 Materials and Design 96 257
[37] Han X Y, Stewart H M, Shevlin S A, Catlow C R A and Guo Z X 2014 Nano Lett. 14 4607
[38] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotech. 7 490
[39] Peng X, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[40] Kou L Z, Tang C, Zhang Y, Heine T, Chen C F and Frauenheim T 2012 J. Phys. Chem. Lett. 3 2934
[41] Xiong W Q, Xia C X, Peng Y T, Du J, Wang T X, Zhang J C and Jia Y 2016 J. Phys. Chem. Lett. 18 6534
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!