Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 064101    DOI: 10.1088/1674-1056/25/6/064101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model

Tao Xie(谢涛)1,2, Shang-Zhuo Zhao(赵尚卓)1,2, William Perrie3, He Fang(方贺)1,2, Wen-Jin Yu(于文金)1,2, Yi-Jun He(何宜军)1,2
1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 Jiangsu Engineering Technology Research Center of Marine Environment Detection, Nanjing 210044, China;
3 Fishreis & Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2 Canada
Abstract  

To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.

Keywords:  fractal      ocean surface current      ocean wave      NRCS  
Received:  20 October 2015      Revised:  12 January 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  91.50.Iv (Marine magnetics and electromagnetics)  
  92.10.Hm (Ocean waves and oscillations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.

Corresponding Authors:  Tao Xie     E-mail:  xietao@nuist.edu.cn

Cite this article: 

Tao Xie(谢涛), Shang-Zhuo Zhao(赵尚卓), William Perrie, He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军) Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model 2016 Chin. Phys. B 25 064101

[1] Yoder J A, Doney S C, Siegel D A and Wilson C 2010 Oceanography 23 104
[2] Chapron B, Collard F and Ardhuin F 2005 J. Geophys. Res. 110 C07008
[3] Johannessen J A, Chapron B, Collard F, Kudryavtsev V, Mouche A, Akimov D and Dagestad K F 2008 Geophys. Res. Lett. 35 L22608
[4] Marghany M 2011 J. Phys. Sci. 6 6630
[5] Hansen M W, Collard F, Dagestad K, Johannessen J A, Fabry P and Chapron B 2011 IEEE Trans. Geosci. Remote Sens. 49 103582
[6] Rossi C, Runge H, Breit H and Fritz T 2010 IGARSS'10, July 25-30, Hawaii, USA, p. 3055
[7] Zhang F W, Drennan W M, Haus B K and Graber H C 2009 J. Geophys. Res. 114 C01018
[8] Smith J A 2006 J. Phys. Oceano. 36 1403
[9] Yu J and Slinn D N 2003 J. Geophys. Res. 108 C3 3088
[10] Xie T, Zou G, Perrie W, Kuang H and Chen W 2010 Chin. Phys. B 19 059201
[11] Guo L, Wang Y and Wu Z 2005 Acta Phys. Sin. 54 96 (in Chinese)
[12] Yang J, Guo L and Wan J 2007 Acta Phys. Sin. 56 2106 (in Chinese)
[13] Tian W, Ren X and Guo L 2012 Systems Engineering and Electronics 34 1775 (in Chinese)
[14] Tao R, Li Y, Bai X and Waheed A 2012 IEEE Trans. Geosci. Remote Sens. 50 3627
[15] Wang C, Feng W and Li C 2013 J. B. Univ. Aeronaut. Astronaut. 39 1212 (in Chinese)
[16] Luo F, Zhang D and Zhang B 2013 IEEE Geosci. Remote Sens. Lett. 10 1295
[17] Chen Y, Hu Y, Lin T and Wang H 2014 J. N. Univ. Sci. Tech. 38 140 (in Chinese)
[18] Longuet-Higgins M S and Stewart R W 1960 J. Fluid Mech. 8 565
[19] Ryu S, Kim M H and Lynett P J 2003 Comput. Mech. 32 336
[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[4] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[5] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[6] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[7] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[8] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
[9] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[10] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[11] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[12] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[13] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[14] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[15] Exploring the relationship between fractal features and bacterial essential genes
Yong-Ming Yu(余永明), Li-Cai Yang(杨立才), Qian Zhou(周茜), Lu-Lu Zhao(赵璐璐), Zhi-Ping Liu(刘治平). Chin. Phys. B, 2016, 25(6): 060503.
No Suggested Reading articles found!