Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010304    DOI: 10.1088/1674-1056/25/1/010304
GENERAL Prev   Next  

Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system

Qin Wu(吴琴)
School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
Abstract  We investigate the properties of the ponderomotive squeezing in an optomechanical system coupled to a charged nanomechanical oscillator (NMO) nearby via Coulomb force. We find that the introduction of Coulomb interaction allows the generation of squeezed output light from this system. Our numerical results show that the degree of squeezing can be tuned by the Coulomb coupling strength, the power of laser, and the frequencies of NMOs. Furthermore, the squeezing generated in our approach can be used to measure the Coulomb coupling strength.
Keywords:  ponderomotive squeezing      Coulomb interaction      optomechanical system  
Received:  20 August 2015      Revised:  17 September 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
Corresponding Authors:  Qin Wu     E-mail:  905374532@qq.com

Cite this article: 

Qin Wu(吴琴) Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system 2016 Chin. Phys. B 25 010304

[1] Kippenberg T J and Vahala K J 2008 Science 321 1172
[2] Marquardt F and Girvin S M 2009 Physics 2 40
[3] Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
[4] Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
[5] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
[6] Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
[7] Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
[8] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Diuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
[9] Shu J 2011 Chin. Phys. Lett. 28 104203
[10] Yan X B, Yang L, Tian X D, et al. 2014 Acta Phys. Sin. 63 204201 (in Chinese)
[11] Yan X B, Gu K H, Fu C B, et al. 2014 Chin. Phys. B 23 114201
[12] Rocheleau T, Ndukum T, Machlin C, Hertzberg J, Clerk A and Schwab K 2010 Nature 463 72
[13] Miao H, Danilishin S, Müller-Ebhardt H and Chen Y 2010 New J. Phys. 12 083032
[14] Liu Y C, Xiao Y F, Luan X S and Wong C W 2015 Sci. China-Phys. Mech. Astro 58 050305
[15] Yan Y, Gu W J and Li G X 2015 Sci. China-Phys. Mech. Astro. 58 050306
[16] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[17] Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
[18] Joshi C, Akram U and Milburn G J 2014 New J. Phys. 16 023009
[19] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[20] Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A I and Simon C 2014 Phys. Rev. Lett. 112 080503
[21] Zheng Q and Zhang D 2013 Chin. Phys. Lett. 30 024213
[22] Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 24 104208
[23] Woolley M J, Doherty A C, Milburn G J and Schwab K C 2008 Phys. Rev. A 78 062303
[24] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
[25] Asjad M, Agarwal G S, Kim M S, Tombesi P, Di Giuseppe G and Vitali D 2014 Phys. Rev. A 89 023849
[26] Abadie J, Abbott B P, Abott T D, et al. 2011 Nat. Phys. 7 962
[27] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photon. 7 229
[28] Braunstein S L and Van L P 2005 Rev. Mod. Phys. 77 513
[29] Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Müller-Ebhardt H and Schnabel R 2010 Phys. Rev. Lett. 104 251102
[30] Braginsky V and Manukin A 1967 Sov. Phys. JETP 25 653
[31] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[32] Mancini E and Tombesi P 1994 Phys. Rev. A 49 4055
[33] Mancini S, Mankó V I and Tombesi P 1997 Phys. Rev. A 55 3042
[34] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kum D M 2012 Nature 448 476
[35] Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M and Painter O 2013 Nature 500 185
[36] Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012
[37] Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 017979
[38] Min F X, Xiao X Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
[39] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[40] Chen R X, Shen L T and Zheng S B 2015 Phys. Rev. A 91 022326
[41] Hensinger W K, Utami D W, Goan H S, Schwab K, Monroe C and Milburn G J 2005 Phys. Rev. A 72 041405(R)
[42] Agarwal G S and Huang M 2012 Phys. Rev. A 85 021801(R)
[43] Genes C, Vitali D, Tombei D, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[44] Kleckner D, Marshall W, de Dood Michiel J A, Dniyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
[45] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[12] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[13] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[14] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[15] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
No Suggested Reading articles found!