Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096801    DOI: 10.1088/1674-1056/24/9/096801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Gas adsorption and accumulation on hydrophobic surfaces: Molecular dynamics simulations

Luo Qing-Qun (骆庆群), Yang Jie-Ming (杨洁明)
Taiyuan University of Technology, Key Laboratory Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan 030024, China
Abstract  Molecular dynamics simulations show that the gas dissolved in water can be adsorbed at a hydrophobic interface and accumulates thereon. Initially, a water depletion layer appears on the hydrophobic interface. Gas molecules then enter the depletion layer and form a high-density gas-enriched layer. Finally, the gas-enriched layer accumulates to form a nanobubble. The radian of the nanobubble increases with time until equilibrium is reached. The equilibrium state arises through a Brenner-Lohse dynamic equilibrium mechanism, whereby the diffusive outflux is compensated by an influx near the contact line. Additionally, supersaturated gas also accumulates unsteadily in bulk water, since it can diffuse back into the water and is gradually adsorbed by a solid substrate.
Keywords:  hydrophobic      molecular dynamics      nanobubble  
Received:  26 December 2014      Revised:  19 May 2015      Accepted manuscript online: 
PACS:  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21376161).
Corresponding Authors:  Yang Jie-Ming     E-mail:  yangjieming@tyut.edu.cn

Cite this article: 

Luo Qing-Qun (骆庆群), Yang Jie-Ming (杨洁明) Gas adsorption and accumulation on hydrophobic surfaces: Molecular dynamics simulations 2015 Chin. Phys. B 24 096801

[1] Miller J, Hu Y, Veeramasuneni S and Lu Y 1999 Colloids Surf. A 154 137
[2] Parker J L, Claesson P M and Attard P 1994 J. Phys. Chem. 98 8468
[3] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573
[4] Tyrrell J W G and Attard P 2001 Phys. Rev. Lett. 87 176104
[5] Holmberg M, Kühle A, Morch K A and Boisen A 2003 Langmuir 19 10510
[6] Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen A C and Findenegg G H 2003 Langmuir 19 2409
[7] Simonsen A C, Hansen P L and Klösgen B 2004 J. Colloid Interface Sci. 273 291
[8] Borkent B, Dammer S, Schönherr H, Vancso G and Lohse D 2007 Phys. Rev. Lett. 98 204502
[9] Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S and Lohse 2007 Langmuir 23 7072
[10] Yang S, Kooij E S, Poelsema B, Lohse D and Zandvliet H J W 2008 EPL 81 64006
[11] Hampton M A and Nguyen A V 2010 Adv. Colloid Interface Sci. 154 30
[12] Craig V S J 2011 Soft Matter 7 40
[13] Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L and Hu J 2004 Langmuir 20 3813
[14] Zhang X H, Li G, Wu Z H, Zhang X D and Hu J 2005 Chin. Phys. 14 1774
[15] Lou S T, Gao J X, Xiao X D, Li X J, Li G L, Zhang Y, Li M Q, Sun J L and Hu J 2001 Chin. Phys. 10 108
[16] Zhang X H, Zhang X, Sun J, Zhang Z, Li G, Fang H, Xiao X, Zeng X and Hu J 2006 Langmuir 23 1778
[17] Zhang X H, Maeda N and Hu J 2008 J. Phys. Chem. B 112 13671
[18] Zhang L J, Zhang X H, Fan C H, Zhang Y and Hu J 2009 Langmuir 25 8860
[19] Seddon J R T, Bliznyuk O, Kooij E S, Poelsema B, Zandvliet H J W and Lohse D 2010 Langmuir 26 9640
[20] Borkent B M, de Beer S, Mugele F and Lohse D 2010 Langmuir 26 260
[21] Tyrrell J W G and Attard P 2002 Langmuir 18 160
[22] Thomy A, Duval X and Regnier J 1981 Surf. Sci. Rep. 1 1
[23] Dammer S and Lohse D 2006 Phys. Rev. Lett. 96 206101
[24] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646
[25] Sendner C, Horinek D, Bocquet L and Netz R R 2009 Langmuir 25 10768
[26] Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501
[27] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[28] Essmann U, Perera L, Berkowitz M L, DardenmT, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[29] Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G, Zhang W, Yang R, Cieplak P, Luo R and Lee T 2003 J. Comb. Chem. 24 1999
[30] Berendsen H J C, Postma J P M, van Gunsteren W F and Hermans J 1981 Intermolecular Forces (Dordrecht: Reidel) p. 331
[31] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A 1995 J. Am. Chem. Soc. 117 5179
[32] Frank H S 1945 J. Chem. Phys. 13 478
[33] Stillinger F 1973 J. Solution Chem. 2 141
[34] Jensen T R, Ostergaard Jensen M, Reitzel N, Balashev K, Peters G H, Kjaer K and Bjornholm T 2003 Phys. Rev. Lett. 90 086101
[35] Schwendel D, Hayashi T, Dahint R, Pertsin A, Grunze M, Steitz R and Schreiber F 2003 Langmuir 19 2284
[36] Poynor A, Hong L, Robinson I K, Granick S, Zhang Z and Fenter P A 2006 Phys. Rev. Lett. 97 266101
[37] Mezger M, Schöer S, Reichert H, Schröer H, Okasinski J, Honkimäki V, Ralston J, Bilgram J, Roth R and Dosch H 2008 J. Chem. Phys. 128 244705
[38] Mezger M, Sedlmeier F, Horinek D, Reichert H, Pontoni D and Dosch H 2010 J. Amer. Chem. Soc. 132 6735
[39] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[40] Zhang X H, Li G, Maeda N and Hu J 2006 Langmuir 22 9238
[41] Zhang X H, Khan A and Ducker W A 2007 Phys. Rev. Lett. 98 136101
[42] Zhang X H, Quinn A and Ducker W A 2008 Langmuir 24 4756
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
No Suggested Reading articles found!