Abstract Molecular dynamics simulations show that the gas dissolved in water can be adsorbed at a hydrophobic interface and accumulates thereon. Initially, a water depletion layer appears on the hydrophobic interface. Gas molecules then enter the depletion layer and form a high-density gas-enriched layer. Finally, the gas-enriched layer accumulates to form a nanobubble. The radian of the nanobubble increases with time until equilibrium is reached. The equilibrium state arises through a Brenner-Lohse dynamic equilibrium mechanism, whereby the diffusive outflux is compensated by an influx near the contact line. Additionally, supersaturated gas also accumulates unsteadily in bulk water, since it can diffuse back into the water and is gradually adsorbed by a solid substrate.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21376161).
Corresponding Authors:
Yang Jie-Ming
E-mail: yangjieming@tyut.edu.cn
Cite this article:
Luo Qing-Qun (骆庆群), Yang Jie-Ming (杨洁明) Gas adsorption and accumulation on hydrophobic surfaces: Molecular dynamics simulations 2015 Chin. Phys. B 24 096801
[1]
Miller J, Hu Y, Veeramasuneni S and Lu Y 1999 Colloids Surf. A 154 137
[2]
Parker J L, Claesson P M and Attard P 1994 J. Phys. Chem. 98 8468
[3]
Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vac. Sci. Technol. B 18 2573
[4]
Tyrrell J W G and Attard P 2001 Phys. Rev. Lett. 87 176104
[5]
Holmberg M, Kühle A, Morch K A and Boisen A 2003 Langmuir 19 10510
[6]
Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen A C and Findenegg G H 2003 Langmuir 19 2409
[7]
Simonsen A C, Hansen P L and Klösgen B 2004 J. Colloid Interface Sci. 273 291
[8]
Borkent B, Dammer S, Schönherr H, Vancso G and Lohse D 2007 Phys. Rev. Lett. 98 204502
[9]
Yang S, Dammer S M, Bremond N, Zandvliet H J W, Kooij E S and Lohse 2007 Langmuir 23 7072
[10]
Yang S, Kooij E S, Poelsema B, Lohse D and Zandvliet H J W 2008 EPL 81 64006
[11]
Hampton M A and Nguyen A V 2010 Adv. Colloid Interface Sci. 154 30
[12]
Craig V S J 2011 Soft Matter 7 40
[13]
Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L and Hu J 2004 Langmuir 20 3813
[14]
Zhang X H, Li G, Wu Z H, Zhang X D and Hu J 2005 Chin. Phys. 14 1774
[15]
Lou S T, Gao J X, Xiao X D, Li X J, Li G L, Zhang Y, Li M Q, Sun J L and Hu J 2001 Chin. Phys. 10 108
[16]
Zhang X H, Zhang X, Sun J, Zhang Z, Li G, Fang H, Xiao X, Zeng X and Hu J 2006 Langmuir 23 1778
[17]
Zhang X H, Maeda N and Hu J 2008 J. Phys. Chem. B 112 13671
[18]
Zhang L J, Zhang X H, Fan C H, Zhang Y and Hu J 2009 Langmuir 25 8860
[19]
Seddon J R T, Bliznyuk O, Kooij E S, Poelsema B, Zandvliet H J W and Lohse D 2010 Langmuir 26 9640
[20]
Borkent B M, de Beer S, Mugele F and Lohse D 2010 Langmuir 26 260
[21]
Tyrrell J W G and Attard P 2002 Langmuir 18 160
[22]
Thomy A, Duval X and Regnier J 1981 Surf. Sci. Rep. 1 1
[23]
Dammer S and Lohse D 2006 Phys. Rev. Lett. 96 206101
[24]
Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646
[25]
Sendner C, Horinek D, Bocquet L and Netz R R 2009 Langmuir 25 10768
[26]
Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501
[27]
Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[28]
Essmann U, Perera L, Berkowitz M L, DardenmT, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[29]
Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G, Zhang W, Yang R, Cieplak P, Luo R and Lee T 2003 J. Comb. Chem. 24 1999
[30]
Berendsen H J C, Postma J P M, van Gunsteren W F and Hermans J 1981 Intermolecular Forces (Dordrecht: Reidel) p. 331
[31]
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A 1995 J. Am. Chem. Soc. 117 5179
[32]
Frank H S 1945 J. Chem. Phys. 13 478
[33]
Stillinger F 1973 J. Solution Chem. 2 141
[34]
Jensen T R, Ostergaard Jensen M, Reitzel N, Balashev K, Peters G H, Kjaer K and Bjornholm T 2003 Phys. Rev. Lett. 90 086101
[35]
Schwendel D, Hayashi T, Dahint R, Pertsin A, Grunze M, Steitz R and Schreiber F 2003 Langmuir 19 2284
[36]
Poynor A, Hong L, Robinson I K, Granick S, Zhang Z and Fenter P A 2006 Phys. Rev. Lett. 97 266101
[37]
Mezger M, Schöer S, Reichert H, Schröer H, Okasinski J, Honkimäki V, Ralston J, Bilgram J, Roth R and Dosch H 2008 J. Chem. Phys. 128 244705
[38]
Mezger M, Sedlmeier F, Horinek D, Reichert H, Pontoni D and Dosch H 2010 J. Amer. Chem. Soc. 132 6735
[39]
Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[40]
Zhang X H, Li G, Maeda N and Hu J 2006 Langmuir 22 9238
[41]
Zhang X H, Khan A and Ducker W A 2007 Phys. Rev. Lett. 98 136101
[42]
Zhang X H, Quinn A and Ducker W A 2008 Langmuir 24 4756
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.