Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084214    DOI: 10.1088/1674-1056/24/8/084214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

Cheng Sheng-Yi (程生毅)a b c, Liu Wen-Jin (刘文劲)a c, Chen Shan-Qiu (陈善球)a c, Dong Li-Zhi (董理治)a c, Yang Ping (杨平)a c, Xu Bing (许冰)a
a Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
b Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
c University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2)~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n)~ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.
Keywords:  adaptive optics      iterative wavefront control algorithm      direct gradient wavefront control algorithm  
Received:  22 October 2014      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  95.75.Qr (Adaptive and segmented optics)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Corresponding Authors:  Xu Bing     E-mail:  bing_xu_ioe@163.com

Cite this article: 

Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰) Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system 2015 Chin. Phys. B 24 084214

[1] Rousset G and Roddier F 1991 Adaptive Optics in Astronomy (Vol. 5) (Cambridge: Cambridge University Press) p. 91
[2] Hu S, Xu B, Zhang X, Hou J, Wu J and Jiang W 2006 Appl. Opt. 45 2638
[3] Yu L H, Liang X Y, Ren Z J, Wang L, Xu Y, Lu X M and Yu G T 2012 Chin. Phys. B 21 014201
[4] Zou W, Qi X and Burns S 2008 Opt. Lett. 33 2602
[5] Zhang L Q, Gu N T and Rao C H 2013 Acta Phys. Sin. 62 169501 (in Chinese)
[6] Lei X, Wang S, Yan H, Liu W, Dong L, Yang P and Xu B 2012 Opt. Express 20 22143
[7] Cheng S Y, Chen S Q, Dong L Z, Liu W J, Wang S, Yang P, Ao M W and Xu B 2014 Acta Phys. Sin. 63 074206 (in Chinese)
[8] Li C, Sredar N, Ivers K, Queener H and Porter J 2010 Opt. Express 18 16671
[9] Ren Z J, Liang X Y, Liu M B, Xia C Q, Lu X M, Li R X and Xu Z Z 2009 Chin. Phys. Lett. 26 124203
[10] Ning Y, Zhou H, Yu H, Rao C H and Jiang W H 2009 Chin. Phys. B 18 1089
[11] Gilles L, Ellerbroek B L and Vogel C R 2003 Adaptive Optical System Technologies II, Proc. SPIE, February 1, 2003, Hawaii, USA, p. 1011
[12] Davies R I, Bonaccini D, Rabien S, Hackenberg W, Ott T, Hippler S, Neumann U, Barden M, Lehnert M, Eisenhauer F and Genzel R 2002 ESO Astrophysics Symposia: Scientific Drivers for ESO Future VLT/VLTI Instrumentation (Berlin/Heidelberg: Springer-Verlag) p. 158
[13] Luc G, Curtis R V and Brent L E 2002 J. Opt. Soc. Am. A 19 1817
[14] Luc G, Brent L E and Curtis R V 2003 Appl. Opt. 42 5233
[15] Eric T and Michel T 2010 J. Opt. Soc. Am. A 27 1046
[16] Vogel C R 2004 Advancements in Adaptive Optics, Proc. SPIE, June 21, 2004, Bellingham, WA, USA, p. 1327
[17] Belgin M, Back G and Ribbens C J 2011 Int. J. Parallel Prog. 39 62
[18] John M C and John G 2004 Science, The International Journal of High Performance Computing Applications 18 225
[19] Jiang W and Li H 1990 Adaptive Optics and Optical Structures, Proc. SPIE, March 1, 1990, The Hague, Netherlands, p. 82
[20] Zhu Y, Rao L, Yan T, Zhang J and Li B 2010 Matrix Analysis and Calculation (Vol. 9) (Beijing: National Defense Industry Press) p. 160 (in Chinese)
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[5] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[6] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[7] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[8] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[9] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!