Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068702    DOI: 10.1088/1674-1056/24/6/068702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss

Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏)
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract  We propose a design and optimization for directional coupling in terahertz hybrid-cladding hollow waveguide. It is composed of two square hollow waveguides which touch each other and are surrounded by a metallic layer. By employing the finite element method, the coupling performance and loss property are numerically investigated. Numerical results indicate that this directional coupler with hybrid-cladding can realize ultra-narrow-band coupling; it provides a low confinement loss performance: the confinement loss can reach as low as 6.27× 10-5 cm-1. Moreover, the further analyses of configuration and performance show that confinement loss and frequency range shift for the low-confinement-loss frequency regime can be realized and optimized by appropriately tuning the thickness values of the metallic and dielectric layer. In addition, through the further analysis of coupling performance, the possibilities of realizing ultra-narrow-band couplings in different frequency ranges are demonstrated. It is a powerful candidate for high precision optical fiber sensing, and communication in terahertz splitting fields.
Keywords:  terahertz      terahertz waveguides      coupler      hollow waveguide      ultra-narrow-band coupling  
Received:  15 October 2014      Revised:  30 December 2014      Accepted manuscript online: 
PACS:  87.50.U-  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Specific Scientific and Technological Cooperation between China and Russia (Grant No. 2010DFR80140) and the National Natural Science Foundation of China (Grant No. 51309059).
Corresponding Authors:  Yu Ying-Ying     E-mail:  yuyingying58@hotmail.com
About author:  87.50.U-; 42.81.Qb; 42.81.Dp

Cite this article: 

Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏) Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss 2015 Chin. Phys. B 24 068702

[1] Atakaramians S, Afshar V S, Fischer B M, Abbott D and Monro T M 2008 Opt. Express 16 8845
[2] Chen L J, Chen L W, Kao T F, Lu J Y and Sun C K 2006 Opt. Lett. 31 308
[3] Bai J J, Wang C H, Huo B Z, Wang X H and Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese)
[4] Yin G B, Li S G, Wang X Y and Liu S 2011 Chin. Phys. B 20 090701
[5] Xu D G, Wang Y Y, Yu H, Li J Q, Li Z X, Yan C, Zhang H, Liu P X, Zhong K, Wang W P and Yao J Q 2014 Chin. Phys. B 23 054210
[6] Jiang X G, Chen D R and Hu G F 2013 Appl. Opt. 52 770
[7] Li Y F, Hu X K, Liu F, Li J, Xing Q R, Hu M L, Lu C and Wang C Y 2012 J. Opt. Soc. Am. B 29 3114
[8] Vallejo F A and Hayden L M 2013 Opt. Express 21 5842
[9] Theuer M, Shutler A J, Harsha S S, Beigang R and Grischkowsky D 2011 Appl. Phys. Lett. 98 071108
[10] Li S S, Zhang H, Hou Y, Bai J J, Liu W W and Chang S J 2013 Appl. Opt. 52 3305
[11] Zhu Y F, Chen M Y, Wang H, Yao H B, Zhang Y K and Yang J C 2013 IEEE Photon. J. 5 7101410
[12] Li X Y, Yu Y Y, Sun B and He K P 2014 Chin. Phys. B 23 088701
[13] Nielsen K, Rasmussen K H, Jepsen U P and Bang O 2010 Opt. Lett. 35 2879
[14] Bao H L, Nielsen K, Rasmussen K H, Jepsen U P and Bang O 2014 Opt. Express 22 9486
[15] Bai J J, Wang C H, Hou Y, Fan F and Chang S J 2012 Acta Phys. Sin. 61 108701 (in Chinese)
[16] Jiang Z W, Bai J J, Hou Y, Wang X H and Chang S J 2013 Acta Phys. Sin. 62 028702 (in Chinese)
[17] Dupuis A, Allard J F, Morris D, Stoeffler K, Dubois C and Skorobogatiy M 2009 Opt. Express 17 8012
[18] Chen H W, Chiu C M, Lai C H, Kuo J L, Chiang P J, Hwang Y J, Chang H C and Sun C K 2009 J. Lightwave Technol. 27 1489
[19] Lai C H, Sun C K and Chang H C 2011 Opt. Lett. 36 3590
[20] Lu J T, Lai C H, Tseng T F, Chen H, Tsai Y F, Hwang Y J, Chang H C and Sun C K 2011 Opt. Express 19 26883
[21] Fu G, Jin W, Fu X and Bi W 2012 IEEE Photon. Technol. Lett. 4 1028
[22] Matsuura Y and Takeda E 2008 J. Opt. Soc. Am. B 25 1949
[23] Atakaramians S, Afshar V S, Monro T M and Abbott D 2013 Adv. Opt. Photon. 5 169
[24] Harrington J A, George R, Pedersen P and Mueller E 2004 Opt. Express 12 5263
[25] Lu D M, Yao J Q, Zheng Y, Geng Y F, Li Z Y and Wang P 2007 Laser Infrared 37 1287
[26] Koshiba M 2002 IEICE Trans. Electron. E85-C 881
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!