Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068703    DOI: 10.1088/1674-1056/24/6/068703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

Wang Sheng-Hao (王圣浩)a, Margie P. Olbinadob, Atsushi Momoseb, Han Hua-Jie (韩华杰)a, Hu Ren-Fang (胡仁芳)a, Wang Zhi-Li (王志立)a, Gao Kun (高昆)a, Zhang Kai (张凯)c, Zhu Pei-Ping (朱佩平)c, Wu Zi-Yu (吴自玉)a c
a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230027, China;
b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

X-ray Talbot–Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot–Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot–Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot–Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.

Keywords:  x-ray Talbot-Lau interferometer      x-ray imaging      phase-contrast      tube accelerating voltage      x-ray tube  
Received:  04 November 2014      Revised:  04 January 2015      Accepted manuscript online: 
PACS:  87.59.-e (X-ray imaging)  
  07.60.Ly (Interferometers)  
  42.30.Rx (Phase retrieval)  
  87.57.-s (Medical imaging)  
Fund: 

Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

Corresponding Authors:  Wang Sheng-Hao, Wu Zi-Yu     E-mail:  wongshenghao@gmail.com;wuzy@ustc.edu.cn
About author:  87.59.-e; 07.60.Ly; 42.30.Rx; 87.57.-s

Cite this article: 

Wang Sheng-Hao (王圣浩), Margie P. Olbinado, Atsushi Momose, Han Hua-Jie (韩华杰), Hu Ren-Fang (胡仁芳), Wang Zhi-Li (王志立), Gao Kun (高昆), Zhang Kai (张凯), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉) Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage 2015 Chin. Phys. B 24 068703

[1] Lewis R 2004 Phys. Med. Biol. 49 3573
[2] Momose A 2005 Jpn. J. Appl. Phys. 44 6355
[3] Zhou S A and Brahme A 2008 Phys. Medica 24 129
[4] Bonse U and Hart M 1965 Appl. Phys. Lett. 6 155
[5] Momose A, Takeda T, Itai Y and Hirano K 1996 Nat. Med. 2 596
[6] Momose A 1995 Nucl. Instrum. Method A 352 622
[7] Wilkins S, Gureyev T, Gao D, Pogany A and & Stevenson A 1996 Nature 384 335
[8] Nugent K, Gureyev T, Cookson D, Paganin D and Barnea Z 1996 Phys. Rev. Lett. 77 2961
[9] Davis T, Gao D, Gureyev T, Stevenson A and Wilkins S 1995 Nature 373 595
[10] Chapman D. Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Boil. 42 2015
[11] David C, Nöhammer B, Solak H H and Ziegler E 2002 Appl. Phys. Lett. 81 3287
[12] Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K and Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866
[13] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258
[14] Stutman D, Beck T J, Carrino J A and Bingham C O 2011 Phys. Med. Biol. 56 5697
[15] Bech M, Tapfer A, Velroyen A, Yaroshenko A, Pauwels B, Hostens J, Bruyndonckx P, Sasov A and Pfeiffer F 2013 Sci. Rep. 3 3209
[16] Tanaka J, Nagashima M, Kido K, Hoshino Y, Kiyohara J, Makifuchi C, Nishino S, Nagatsuka S and Momose A 2013 Z. Med. Phys. 23 222
[17] Momose A, Yashiro W, Kido K, Kiyohara J, Makifuchi C, Ito T, Nagatsuka S, Honda C, Noda D, Hattori T, Endo T, Nagashima M and Tanaka J 2014 Philos. T. R. Soc. A 372 20130023
[18] Grodzins L 1983 Nucl. Instrum. Methods 206 541
[19] Kottler C, Revol V, Kaufmann R and Urban C 2010 J. Appl. Phys. 108 114906
[20] Talbot H F 1836 Lond. Edinb. Phil. Mag. 9 401
[21] Bruning J H, Herriott D R, Gallagher J E, Rosenfeld D P, White A D and Brangaccio D J 1974 Appl. Opt. 13 2693
[22] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, BröNnimann C H, Grünzweig C and David C 2008 Nat. Mater. 7 134
[23] Moré J J 2005 Opt. Express 12 6296
[25] Zanette I, Weitkamp T, Lang S, Langer M, Mohr J, David C and Baruchel J 2011 Phys. Status Solidi A 208 2526
[26] Del Río M S and Dejus R J Dejus 2004 Synchrotron Radiation Instrumentation: Eighth International Conference on Synchrotron Radiation Instrumentation, 25-29 August, 2003, San Francisco, California (USA), p. 784
[27] Yashiro W, Takeda Y and Momose A 2008 Opt. Express 25 2025
[28] Revol V, Kottler, C, Kaufmann R, Straumann U and Urban C 2010 Rev. Sci. Instrum. 81 073709
[29] Engel K J, Geller D, Köhler T, Martens G, Schusser S, Vogtmeier G, and Rössl E 2011 Nucl. Instrum. Method A 648 S202
[30] Huang J H, Du Y, Lei Y H, Liu X, Guo J C and Niu H B 2014 Acta Phys. Sin. 63 168702 (in Chinese)
[31] Wang Z T 2010 "Research on Methods and Technologies for Grating-based Imaging with Conventional x-ray Source", Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[4] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[5] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[6] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[7] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[8] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[9] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[10] Anisotropic total variation minimization approach in in-line phase-contrast tomography and its application to correction of ring artifacts
Dong-Jiang Ji(冀东江), Gang-Rong Qu(渠刚荣), Chun-Hong Hu(胡春红), Bao-Dong Liu(刘宝东), Jian-Bo Jian(简建波), Xiao-Kun Guo(郭晓坤). Chin. Phys. B, 2017, 26(6): 060701.
[11] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[12] Simple phase extraction in x-ray differential phase contrast imaging
Xin Liu(刘鑫), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ji Li(李冀), Han-Ben Niu(牛憨笨). Chin. Phys. B, 2016, 25(2): 028704.
[13] Elemental x-ray imaging using Zernike phase contrast
Qi-Gang Shao(邵其刚), Jian Chen(陈健), Faiz Wali, Yuan Bao(鲍园), Zhi-Li Wang(王志立), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超), Kun Gao(高昆). Chin. Phys. B, 2016, 25(10): 108702.
[14] Cosine fitting radiography and computed tomography
Li Pan-Yun (李盼云), Zhang Kai (张凯), Huang Wan-Xia (黄万霞), Yuan Qing-Xi (袁清习), Wang Yan (王研), Ju Zai-Qiang (鞠在强), Wu Zi-Yu (吴自玉), Zhu Pei-Ping (朱佩平). Chin. Phys. B, 2015, 24(6): 068704.
[15] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
No Suggested Reading articles found!