Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060702    DOI: 10.1088/1674-1056/24/6/060702
GENERAL Prev   Next  

In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer

Fang Jian-Cheng (房建成)a, Wang Tao (王涛)a, Zhang Hong (张红)b, Li Yang (李阳)a, Cai Hong-Wei (蔡洪炜)a
a School of Instrument Science and Opto-Electronics Engineering, Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191, China;
b School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Abstract  A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm.
Keywords:  spin-exchange relaxation-free      atomic magnetometer      magnetic field gradient      magnetic shield      AC-Stark shift  
Received:  03 November 2014      Revised:  24 December 2014      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.55.-w (Magnetic instruments and components)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61227902, 61374210, and 61121003).
Corresponding Authors:  Wang Tao     E-mail:  wangtao@buaa.edu.cn
About author:  07.55.Ge; 07.55.-w; 41.20.Gz; 32.60.+i

Cite this article: 

Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜) In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer 2015 Chin. Phys. B 24 060702

[1] Xia H, Baranga A B-A, Hoffman D and Romalis M V 2006 Appl. Phys. Lett. 89 211104
[2] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[3] Wyllie R, Kauer M, Wakai R T and Walker T G 2012 Opt. Lett. 37 2247
[4] Li S G, Xu Y F, Wang Z Y, Liu Y X and Lin Q 2009 Chin. Phys. Lett. 26 067805
[5] Yang A L, Yang G Q, Xu Y F and Lin Q 2014 Chin. Phys. B 23 027601
[6] Fang J C, Wang T, Zhang H, Li Y and Zou S 2014 Rev. Sci. Instrum. 85 123104
[7] Seltzer S J 2008 "Developments in Alkali-Metal Atomic Magnetometry", Ph. D. Dissertation (New Jersey: Princeton University)
[8] Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L and Knappe S 2012 Biomed. Opt. Express 3 981
[9] Wyllie R, Kauer M, Smetana G S, Wakai R T and Walker T G 2012 Phys. Med. Biol. 57 2619
[10] Kornack T W 2005 "A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer", Ph. D. Dissertation (New Jersey: Princeton University)
[11] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[12] Allred J C and Lyman R N 2002 Phys. Rev. Lett. 89 130801
[13] Shi R Y and Wang Y H 2013 Chin. Phys. B 22 100703
[14] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[15] Budker D and Romalis M 2007 Nat. Phys. 3 227
[16] Sumner T J, Pendlebury J M and Smith K F 1987 J. Phys. D: Appl. Phys. 20 1095
[17] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[18] Fang J C and Qin J 2012 Rev. Sci. Instrum. 83 103104
[19] Seltzer S J and Romalis M V 2004 Appl. Phys. Lett. 85 4804
[20] Fang J C, Wang T, Quan W, Yuan H, Zhang H, Li Y and Zou S 2014 Rev. Sci. Instrum. 85 063108
[21] Bloch F 1946 Phys. Rev. 70 460
[22] Brown J M 2011 "A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer", Ph. D. Dissertation (New Jersey: Princeton University)
[23] Sulai I A, Wyllie R, Kauer M, Smetana G S, Wakai R T and Walker T G 2013 Opt. Lett. 38 974
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[4] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[5] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[6] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[7] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[8] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[9] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[10] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[11] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[12] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[13] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[14] Effect of Raman-pulse duration related to the magnetic field gradient in high-precision atom gravimeters
Yuan Cheng(程源), Yu-Jie Tan(谈玉杰), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(3): 030303.
[15] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
No Suggested Reading articles found!