Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060701    DOI: 10.1088/1674-1056/24/6/060701
GENERAL Prev   Next  

Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator

Cai Jin-Chi (蔡金赤)a b, Hu Lin-Lin (胡林林)b, Ma Guo-Wu (马国武)b, Chen Hong-Bin (陈洪斌)b, Jin Xiao (金晓)b, Chen Huai-Bi (陈怀璧)a
a Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
b Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621000, China
Abstract  In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other.
Keywords:  terahertz      folded waveguide      backward wave oscillator      theoretical models  
Received:  16 September 2014      Revised:  15 December 2014      Accepted manuscript online: 
PACS:  07.50.-e (Electrical and electronic instruments and components)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Project supported by the Innovative Research Foundation of China Academy of Engineering Physics (Grant No. 426050502-2).
Corresponding Authors:  Cai Jin-Chi     E-mail:  caijinchino1@163.com
About author:  07.50.-e; 07.57.Hm

Cite this article: 

Cai Jin-Chi (蔡金赤), Hu Lin-Lin (胡林林), Ma Guo-Wu (马国武), Chen Hong-Bin (陈洪斌), Jin Xiao (金晓), Chen Huai-Bi (陈怀璧) Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator 2015 Chin. Phys. B 24 060701

[1] Siegel P H 2002 IEEE Trans. Microwave Theory Technol. 50 910
[2] Gallerano G P and Biedron S 2004 Proc. 2004 FEL Conference, August 29-September 3, 2004, Trieste, Italy, p. 216
[3] Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N and Schwartzkopf S 2004 Fifth IEEE International Vacuum Electronics Conference, April 27-29, 2004, Monterey, CA, USA, p. 67
[4] Dayton J A, Kory C L, Mearini G T, Malta D, Lueck M and Vancil B 2012 Thirteenth IEEE International Vacuum Electronics Conference, April 24-26, 2012, Monterey, CA, USA, p. 33
[5] Feng J J, Ren D P, Li H Y, Tang Y and Xing J Y 2011 Terahertz Science and Technology 4 164
[6] Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N, Schwartzkopf and Witherspoon R 2003 Proc. SPIE 5070 71
[7] So J K, Shin Y M, Jang K H, Won J H, Srivastava A and Park G S 2006 IEEE Millimeter Waves Systems 82 315
[8] Shin Y M, So J K, Han S T, Jang K H and Park G S 2006 Appl. Phys. Lett. 88 091916
[9] Mineo M and Paoloni C 2012 Porg. Electromagn. Res. Lett. 30 163
[10] Bhattacharijee S, Booske J H, Kory C L, Weide D W, Limbach S, Gallagher S, Welter J D, Lopetz, Gilgenbach R M, Ives R L and Read M E 2004 IEEE Trans. Plasmas Sci. 32 1002
[11] Cai J 2006 "Study of W-band folded waveguide slow wave structure", Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)
[12] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O and Bhattacharjee S 2005 IEEE Tans. Electron Dev. 52 685
[13] Malek F 2009 Nucl. Instrum. Method Phys. Res. A 612 176
[14] He J W, Yan Y, Gong Y B and Wang W X 2011 Chin. Phys. B 20 054102
[15] Xu A, Wang W X, Wei Y Y and Gong Y B 2009 Chin. Phys. B 18 810
[16] Yin H R, Xu J and Yue L 2012 Acta Phys. Sin 61 244106 (in Chinese)
[17] Gao P, Booske J H, Yang Z H, Li B, Xu L, He J, Gong Y B and Tian Z 2010 Acta Phys. Sin. 59 8484 (in Chinese)
[18] Yan S M, Su W and Wang Y J 2014 Acta Phys. Sin. 63 238404 (in Chinese)
[19] Hutter R G E 1960 Beam and Wave Electronics in Microwave Tubes (New York: Van Nostrand Company) pp. 23-378
[20] Basu B N 1996 Electromagnetic Theory and Applications in Beam-wave Electronics (Singapore: World Scientific) pp. 20-478
[21] Levush B, Antosen T M, Bromborsky A, Lou W R and Carmel Y 1992 IEEE. Trans. Plasma Sci. 20 263
[22] Pierce J R 1954 Theory and Design of Electron Beams (New York: Van Nostrand Company) pp. 32-197
[23] Gittins J F 1965 Power Traveling-wave Tubes (US: The English Universities Press LTD) pp. 11-276
[24] Gewartowski J W and Watson H A 1965 Principles of Electron Tubes (New York: D. Van Nostrand Company Inc.) pp. 30-355
[25] Rowe J E 1965 Nonlinear Electron-Wave Interaction Phenomena (New York/London: Academic Press) pp. 11-391
[26] Gilmour A S 1994 Principles of Traveling Wave Tubes (US: Artechhouse, Inc.) pp. 174-188
[27] Zhang K Q and Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) pp. 99-101
[28] Huang H J 1964 Principle of Microwaves (Beijing: Science Press) pp. 247-302 (in Chinese)
[29] Kirley M P, Carlsson N and Yang B B 2012 Thirteenth IEEE International Vacuum Electronics Conference, April 24-26, 2012, Monterey, CA, USA, p. 239
[30] Marcuvitz N 1986 Waveguide Handbook (UK: Stevenage Peregrinus) pp. 296-333
[31] Cai J C, Hu L L, Ma G W, Chen H B, Jin X and Chen H B 2014 Journal of Infrared and Millimeter Waves, unpublished
[32] Tian P K and Field L M 1952 Proc. IRE 39 688
[33] HFSS12.0 online help p. 1698
[34] Abubakirov E B, Konyushkow A P and Sergeev A S 2008 Radiophysics and Quantum Electronics 51 610
[35] Acton E 1957 J. Electron. 3 203
[36] Cai J C, Hu L L, Ma G W, Chen H B, Jin X and Chen H B 2014 High Power Laser and Particle Beams, unpublished
[37] Cai J C, Hu L L, Ma G W, Chen H B, Jin X and Chen H B 2014 IEEE. Trans. Plasma Sci. 42 3349
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!