Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117101    DOI: 10.1088/1674-1056/23/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetism in one-dimensional Hubbard model induced by the next-nearest-neighbor hopping at electron density 3/2

Yang Yuan-Yuan (杨媛媛), Zhang Jian (张健), Pan Hui (潘晖), Wang Hai-Long (王海龙)
State Key Laboratory of Software Development Environment and Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  

Ferromagnetism in the one-dimensional Hubbard model with the next-nearest-neighbor hopping is explored by using the exact-diagonalization method in a small cluster and the equation-of-motion method in the thermodynamic limit with electron density n=3/2. With these two complementary methods, it is found that an intermediate value of the next-nearest-neighbor hopping amplitude t1 tends to stabilize the fully polarized ferromagnetic state under the condition that the on-site coulomb interaction U is sufficiently large in our model. The ground-state phase diagram of the model is presented in the t1-U plane.

Keywords:  ferromagnetism      frustration effect      random phase approximation  
Received:  21 November 2013      Revised:  10 April 2014      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the State Key Laboratory of Software Development Environment, China (Grant No. SKLSDE-2013ZX-21), the National Natural Science Foundation of China (Grant No. 50971011), and the Beijing Natural Science Foundation, China (Grant No. 1102025).

Corresponding Authors:  Wang Hai-Long     E-mail:  nhlwang@buaa.edu.cn

Cite this article: 

Yang Yuan-Yuan (杨媛媛), Zhang Jian (张健), Pan Hui (潘晖), Wang Hai-Long (王海龙) Ferromagnetism in one-dimensional Hubbard model induced by the next-nearest-neighbor hopping at electron density 3/2 2014 Chin. Phys. B 23 117101

[1] Nagaoka 1966 Phys. Rev. 147 392
[2] Tian G S 1990 J. Phys. A: Math. Gen. 23 2231
[3] Tian G S 1991 Phys. Rev. B 44 4444
[4] Ulmke M 1998 Eur. Phys. J. B 1 301
[5] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[6] Müller-Hartmann E 1995 J. Low. Temp. Phys. 99 349
[7] Farkašovsky P 2002 Phys. Rev. B 66 012404
[8] Pieri P 1996 Mod. Phys. Lett. B 10 1277
[9] Salerno M 1996 Z. Phys. B 99 469
[10] Salerno M 1996 Z. Phys. B 101 619
[11] Liu G H, Wang H L and Tian G S 2011 Int. J. Mod. Phys. B 25 747
[12] Anderson P W 1959 Phys. Rev. 115 2
[13] Lacroix C 1981 J. Phys. F: Met. Phys. 11 2389
[14] Kang K and Min B I 1995 Phys. Rev. B 52 10689
[15] Nielsen M A and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[6] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[7] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Magnetism induced by Mn atom doping in SnO monolayer
Ruilin Han(韩瑞林), Yu Yan(闫羽). Chin. Phys. B, 2018, 27(11): 117505.
No Suggested Reading articles found!