Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108103    DOI: 10.1088/1674-1056/22/10/108103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystal growth, structural and physical properties of the 5d noncentrosymmetric LaOsSi3

Zhang Xu (张旭)a b, Miao Shan-Shan (苗杉杉)b, Wang Pu (王瀑)b, Zheng Ping (郑萍)b, Yin Wen-Long (尹文龙)c, Yao Ji-Yong (姚吉勇)c, Jiang Hong-Wei (姜宏伟)a, Wang Hai (王海)a, Shi You-Guo (石友国)b
a Department of Physics, Capital Normal University, Beijing 100048, China;
b Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  LaOsSi3 single crystals are synthesized for the first time by an arc melting method. The crystal features a tetragonal BaNiSn3-type structure (space group I4mm) which lacks inversion symmetry along the crystallographic c axis and is isostructural with the intensively studied Rashba-type noncentrosymmetric superconductors LaRhSi3 and LaIrSi3. Unlike LaRhSi3 and LaIrSi3 displaying superconductivity, LaOsSi3 shows only metallic behavior over the measured temperature range of 2 K-300 K. The Sommerfeld coefficient γ derived from specific heat is 5.76 mJ·mol-1·K-2, indicating that LaOsSi3 has a weak electronic correlation effect. The absence of superconductivity in LaOsSi3 may lie in the Os 5d bands in the electronic structure. If it is true, it would be useful to provide complementary knowledge in understanding the relation between conduction and the d bands of M in LaMSi3 compounds (M=transition metals).
Keywords:  noncentrosymmetric compound      LaOsSi3      structural and physical properties  
Received:  10 July 2013      Revised:  02 August 2013      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.10.Fq (Growth from melts; zone melting and refining)  
  82.75.Fq (Synthesis, structure determination, structure modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274367, 10904097, and 11274233) and Chinese Academy of Sciences.
Corresponding Authors:  Wang Hai, Shi You-Guo     E-mail:  wanghai@mail.cnu.edu.cn;ygshi@aphy.iphy.ac.cn

Cite this article: 

Zhang Xu (张旭), Miao Shan-Shan (苗杉杉), Wang Pu (王瀑), Zheng Ping (郑萍), Yin Wen-Long (尹文龙), Yao Ji-Yong (姚吉勇), Jiang Hong-Wei (姜宏伟), Wang Hai (王海), Shi You-Guo (石友国) Crystal growth, structural and physical properties of the 5d noncentrosymmetric LaOsSi3 2013 Chin. Phys. B 22 108103

[1] Bauer E, Hilscher G, Michor H, Paul Ch, Scheidt E W, Gribanov A, Seropegin Yu, Noël H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003
[2] Lejay P, Higashi I, Chevalier B, Etourneau J and Hagenmuller P 1984 Mater. Res. Bull. 19 115
[3] Muro Y, Eom D, Takeda N and Ishikawa M 1998 J. Phys. Soc. Jpn. 67 3601
[4] Anand V K, Hillier A D, Adroja D T, Strydom A, Michor M H, McEwen K A and Rainford B D 2011 Phys. Rev. B 83 064522
[5] Yasuda T, Shishido H, Ueda T, Hashimoto S, Settai R, Takeuchi T, Matsuda T D, Haga Y and Onuki Y 2004 J. Phys. Soc. Jpn. 73 1657
[6] Takeuchi T, Yasuda T, Tsujino M, Shishido H, Settai R, Harima H and Onuki Y 2007 J. Phys. Soc. Jpn. 76 014702
[7] Shimoda T, Okuda Y, Takeda Y, Ida Y, Miyauchi Y, Kawai T, Fujie T, Sugitani I, Thamizhavel A, Matsuda T, Haga D Y, Takeuchi T, Nakashima M, Settai R and Onuki Y 2007 J. Magn. Magn. Mater. 310 308
[8] de la Cruz C, Huang Q, Lynn J W, Li J Y, Latcliff W II, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P C 2008 Nature 453 899
[9] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[10] Bauer E, Khan R T, Michor H, Royanian E, Grytsiv A, Melnychenko-Koblyuk N, Rogl P, Reith D, Podloucky R, Scheidt E W, Wolf W and Marsman M 2009 Phys. Rev. B 80 064504
[11] Agterberg D F and Kaur R P 2007 Phys. Rev. B 75 064511
[12] Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004
[13] Okuda Y, Miyauchi Y, Ida Y, Takeda Y, Tonohiro C, Oduchi Y, Yamada T, Dung N D, Matsuda T D, Haga Y, Takeuchi T, Hagiwara M, Kindo K, Harima H, Sugiyama K, Settai R and Onuki Y 2007 J. Phys. Soc. Jpn. 76 044708
[14] Settai R, Miyauchi Y, Takeuchi T, Lèvy F, Sheikin I and Onuki Y 2008 J. Phys. Soc. Jpn. 77 073705
[15] Anand V K, Adroja D T, Hillier A D, Taylor J and Andŕe G 2011 Phys. Rev. B 84 064440
[16] SAINT, version 7.60A; Bruker Analytical X-ray Instruments, Inc. Madison, WI, 2008
[17] Sheldrick G M 2008 Acta Crystallogr. Sect. A 64 112
[18] Dong C 1999 J. Appl. Cryst. 32 838
[19] Sheldrick G M 1997 SHELX-97 Program for Crystal Structure Refinement, University of Göttingen, Germany
[20] Kimura N, Muro Y and Aoki H 2007 J. Phys. Soc. Jpn. 76 051010
[21] Huang G, Greenblatt M and Croft M 1989 Eur. J. Solid State Inorg. Chem. 26 193
[22] Blatt F J 1968 Physics of Electronic Conduction in Solids (New York: McGraw-Hill)
[23] Mendelsohn L B, Biggs F and Mann J B 1970 Phys. Rev. A 2 1130
[24] Kittel C 1966 Introduction to Solid State Physics, 4th edn. (New York: Wiley)
[25] Wagner D 1972 Introduction to the Theory of Magnetism, translated by Ferdinand Cap Translation, ed. Terhaar D (Oxford: Pergamon) p. 31
[26] Perrier Ch, Kreisel J, Vincent H, Chaix-Pluchery O and Madar R 1997 J. Alloys Compd. 262-263 71
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[5] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[6] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[7] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[8] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[9] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
[10] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[11] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[12] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[13] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[14] High-throughput design of functional materials using materials genome approach
Kesong Yang(杨可松). Chin. Phys. B, 2018, 27(12): 128103.
[15] High-throughput research on superconductivity
Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁). Chin. Phys. B, 2018, 27(12): 127402.
No Suggested Reading articles found!