Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097102    DOI: 10.1088/1674-1056/21/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio calculations of the elastic, electronic, optical, and vibrational properties of PdGa compound under pressure

H. Koca, A. Yildirima, E. Deligozb
a Department of Physics, Siirt University, Siirt 56100, Turkey;
b Department of Physics, Aksaray University, Aksaray 68100, Turkey
Abstract  The structural, elastic, electronic, optical, and vibrational properties of cubic PdGa compound are investigated using the norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density functional theory. The calculated lattice constant has been compared with the experimental value and has been found to be in good agreement with experimental data. The obtained electronic band structures show that PdGa compound has no band gap. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated. Our calculated results of elastic constants show that this compound is mechanically stable. Furthermore, the real and imaginary parts of the dielectric function and the optical constants such as the electron energy-loss function, the optical dielectric constant and the effective number of electrons per unit cell are calculated and presented in the study. The phonon dispersion curves are also derived using the direct method.
Keywords:  PdGa      vibrational properties      optical properties      elastic constants  
Received:  26 November 2011      Revised:  13 April 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
Corresponding Authors:  H. Koc     E-mail:  hkoc@siirt.edu.tr

Cite this article: 

H. Koc, A. Yildirim, E. Deligoz Ab initio calculations of the elastic, electronic, optical, and vibrational properties of PdGa compound under pressure 2012 Chin. Phys. B 21 097102

[1] Kovnir K, Armbrüster M, Teschner D, Venkov T, Szentmiklósi L, Jentoft F C, Knop-Gericke A, Grin Y and Schlögl R 2009 Surf. Sci. 603 1784
[2] Osswald J, Giedigkeit R, Armbrüster M, Kovnir K, Jentoft R E, Ressler T, Grin Y and Schlögl R 2006 Europäisches Patent Angemeldet EP1834939A1
[3] Giedigkeit R, Armbrüster M, Kovnir K, Grin Y, Schlögl R, Osswald J, Ressler T and Jentoft R E 2007 International Patent Angemeldet WO/2007/104569A1
[4] Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y and Schlögl R 2008 J. Catal. 258 210
[5] Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y and Schlögl R 2008 J. Catal. 258 219
[6] Kovnir K, Osswald J, Armbrüster M, Giedigkeit R, Ressler T, Grin Y and Schlögl R 2006 Stud. Surf. Sci. Catal. 162 481
[7] Kovnir K, Osswald J, Armbrüster M, Teschner D, Weinberg G, Wild U, Knop-Gericke A, Ressler T, Grin Y and Schlögl R 2009 J. Catal. 264 93
[8] Kovnir K, Armbrüster M, Teschner D, Venkov T V, Jentoft F C, Knop-Gericke A, Grin Y and Schlögl R 2007 Sci. Technol. Adv. Mater. 8 420
[9] Gille P, Ziemer T, Schmidt M, Kovnir K, Burkhardt U and Armbrüster M 2010 Intermetallics 18 1663
[10] Armbrüster M, Borrmann H, Wedel M, Prots Y, Giedigkeit R and Gille P 2010 Z. Kristallogr. 225 617
[11] Phragmen G 1923 Jernkontor. Ann. 107 121
[12] Wartchow R, Gerighausen S and Binnewies M 1997 Z. Kristallogr. NCS 212 320
[13] Pauling L and Soldate A M 1948 Acta Crystallogr. 1 212
[14] Kohn J W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Ceperley D M and Adler M J 1980 Phys. Rev. Lett. 45 566
[16] Perdew P and Zunger A 1981 Phys. Rev. B 23 5048
[17] Ordejn P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[18] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matt. 14 2745
[19] Sankey O F and Niklewski D J 1989 Phys. Rev. B 40 3979
[20] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[21] Saha S and Sinha T P 2000 Phys. Rev. B 62 8828
[22] Murnaghan F D 1944 Proc. Nat. Acad. Sci. USA 30 5390
[23] Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matt. 15 5307
[24] Johnson R A 1988 Phys. Rev. B 37 3924
[25] Pettifor D G 1992 Mater. Sci. Technol. 8 345
[26] Dieter D E 1988 Mechanical Metallurgy (SI metric edn.) (McGraw-Hill)
[27] Bannikov V V, Shein I R and Ivanovskii A L 2007 Phys. Stat. Sol. 1 89
[28] Pugh S F 1954 Phil. Mag. 45 833
[29] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Matt. 20 415218
[30] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka) pp. 60-180
[31] Varshney D, Geetanjali J, Varshney M and Shriya S 2010 J. Alloy. Comp. 495 23
[32] Christman J R 1988 Fundamentals of Solid State Physics (New York: Wiley)
[33] Johnston I, Keeler G, Rollins R and Spicklemire S 1996 Solids State Physics Simulations: The Consortium for Upper-Level Physics Software (New York: Wiley)
[34] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and their Measurements (New York: McGraw-Hill)
[35] Fukuhara M, Sanpei A and Shibuki K 1997 J. Mater. Sci. 32 1207
[36] Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
[37] Fox M 2002 Optical Properties of Solids (USA: Oxford University Press)
[38] Levine Z H and Allan D C 1989 Phys. Rev. Lett. 63 1719
[39] Kovalev O V 1965 Representations of the Crystallographic Space Groups. Irreducible Representations Induced Representations and Corepresentations (Amsterdam: Gordon and Breach)
[40] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[41] Parlinski K 2010 Phonon Software, available at http://wolf.ifj.edu.pl/phonon/
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[10] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!