Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110504    DOI: 10.1088/1674-1056/20/11/110504
GENERAL Prev   Next  

Synchronization criteria for coupled Hopfield neural networks with time-varying delays

M.J. Parka), O.M. Kwona)†, Ju H. Parkb), S.M. Leec), and E.J. Cha d)
a School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea; b Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea; c School of Electronic Engineering, Daegu University, Gyungsan 712-714, Republic of Korea; d Department of Biomedical Engineering, School of Medicine, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea
Abstract  This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
Keywords:  Hopfield neural networks      coupling delay      synchronization      Lyapunov method  
Received:  13 May 2011      Revised:  27 June 2011      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Basic Science Research Program Through the National Research Foundation of Korea (NRF) Funded by the Ministry of Education, Science and Technology (Grant Nos. 2011-0001045 and 2011-0009273).

Cite this article: 

M.J. Park, O.M. Kwon, Ju H. Park, S.M. Lee, and E.J. Cha Synchronization criteria for coupled Hopfield neural networks with time-varying delays 2011 Chin. Phys. B 20 110504

[1] Hopfield J J 1982 Proc. Nat. Acad. Sci. USA 79 2554
[2] Xu S, Lam J and Ho D W C 2006 IEEE Trans. Circuits Syst. II-Express Briefs 53 230
[3] Mou S, Gao H, Lam J and Qiang W 2008 IEEE Trans. Neural Netw. 19 532
[4] Xu S and Lam J 2008 Int. J. Syst. Sci. 39 1095
[5] Watts D J and Strogatz S H 1998 Nature 393 440
[6] Strogatz S H 2001 Nature 410 268
[7] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[8] Xu S and Yang Y 2009 Commun. Nonlinaer Sci. Numer. Simulat. 14 3230
[9] Li T, Wang T, Song A G and Fei S M 2011 Int. J. Control Autom. Syst. 9 187
[10] Song Q 2009 Neurocomputing 72 3907 %Cao J, Int. J. Syst. Sci. 31 (2001) 1313.
[11] Cao J and Li L 2009 Neural Netw. 22 335.
[12] Cao J, Chen G and Li P 2008 IEEE Trans. Syst. Man Cybern.-Part B 38 488
[13] Yu W, Cao J and Lu W 2010 Neurocomputing 73 858.
[14] Cao J, Wang Z and Sun Y 2007 Physica A 385 718.
[15] Li T, Guo L and Wu L 2009 IET Control Theroy Appl. 3 252
[16] Kwon O M, Lee S M and Park J H 2010 Phys. Lett. A 374 1232
[17] Kwon O M K 2011 Int. J. Robust Nonlinear Control 21 338
[18] Kwon O M, Park Ju H and Lee S M 2011 Nonlinear Dyn. 63 239
[19] Liu X and Chen T 2007 Chin. Ann. Math. 28B 737
[20] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[21] de Oliveira M DC and Skelton R E 2001 Stability Tests for Constrained Linear Systems (Berlin: Springer-Verlag) pp. 241-257
[22] Gu K 2000 Proceedings of 39th IEEE Conference on Decision Control Sydney, Australia, Decenber, pp. 2805-2810
[23] Boukas E K and Liu Z K 2002 Deterministic and Stochastic Time Delay Systems (Boston: Birkhäuser)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!