Please wait a minute...
Chinese Physics, 2007, Vol. 16(2): 359-364    DOI: 10.1088/1009-1963/16/2/015
GENERAL Prev   Next  

Energy-optimal control model for train movements

Li Ke-Ping(李克平), Gao Zi-You(高自友), and Mao Bao-Hua(毛保华)
State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
Abstract  In this paper, we propose a new cellular automaton (CA) model for train movement simulations under mixed traffic conditions. A kind of control strategy is employed for trains to reduce energy consumption. In the proposed CA model, the driver controls the train movements by using some updated rules. In order to obtain a good insight into the evolution behaviours of the rail traffic flow, we investigate the space--time diagram of the rail traffic flow and the trajectories of the train movements. The numerical simulation results demonstrate that the proposed CA model can well describe the dynamic behaviours of the train movements. Some complex phenomena of train movements can be reproduced, such as the train delay propagations, etc.
Keywords:  train movement      cellular automaton      moving-block  
Received:  12 April 2006      Revised:  31 August 2006      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Pn (Numerical optimization)  
  89.40.Bb (Land transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 70471088), the National Basic Research Program of China (Grant No 2006CB705500) and the Science and Technology Foundation of Beijing Jiaotong University (Grant No 2004SM026).

Cite this article: 

Li Ke-Ping(李克平), Gao Zi-You(高自友), and Mao Bao-Hua(毛保华) Energy-optimal control model for train movements 2007 Chinese Physics 16 359

[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[5] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[6] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[7] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[8] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[9] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[10] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[11] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[12] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[13] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
[14] Discrete event model-based simulation for train movement on a single-line railway
Xu Xiao-Ming (徐小明), Li Ke-Ping (李克平), Yang Li-Xing (杨立兴). Chin. Phys. B, 2014, 23(8): 080205.
[15] On the modeling of synchronized flow in cellular automaton models
Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐). Chin. Phys. B, 2014, 23(2): 024501.
No Suggested Reading articles found!