Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 096301    DOI: 10.1088/1674-1056/acdfc0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide

Fu Wang(王甫)1, Yandong Sun(孙彦东)2, Yu Zou(邹宇)1, Ben Xu(徐贲)2, and Baoqin Fu(付宝勤)1,†
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Graduate School, China Academy of Engineering Physics, Beijing 100193, China
Abstract  Stacking faults (SFs) are often present in silicon carbide (SiC) and affect its thermal and heat-transport properties. However, it is unclear how SFs influence thermal transport. Using non-equilibrium molecular dynamics and lattice dynamics simulations, we studied phonon transport in SiC materials with an SF. Compared to perfect SiC materials, the SF can reduce thermal conductivity. This is caused by the additional interface thermal resistance (ITR) of SF, which is difficult to capture by the previous phenomenological models. By analyzing the spectral heat flux, we find that SF reduces the contribution of low-frequency (7.5 THz-12 THz) phonons to the heat flux, which can be attributed to SF reducing the phonon lifetime and group velocity, especially in the low-frequency range. The SF hinders phonon transport and results in an effective interface thermal resistance around the SF. Our results provide insight into the microscopic mechanism of the effect of defects on heat transport and have guiding significance for the regulation of the thermal conductivity of materials.
Keywords:  silicon carbide      stacking fault      thermal conductivity      interface thermal resistance      phonon transport      spectral heat flux  
Received:  26 March 2023      Revised:  02 June 2023      Accepted manuscript online:  20 June 2023
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
Fund: roject supported by Sichuan Science and Technology Program (Grant No. 2023NSFSC0044), the National Natural Science Foundation of China (Grant No. 51501119), and the Fundamental Research Funds for the Central Universities. The authors acknowledge that this study was also partially supported by the High-Performance Computing Center at Sichuan University.
Corresponding Authors:  Baoqin Fu     E-mail:  bqfu@scu.edu.cn

Cite this article: 

Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤) Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide 2023 Chin. Phys. B 32 096301

[1] Katoh Y and Snead L L 2019 J. Nucl. Mater. 526 151849
[2] Yueh K and Terrani K A 2014 J. Nucl. Mater. 448 380
[3] Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
[4] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155
[5] Guo X R, Xun Q, Li Z X and Du S X 2019 Micromachines 10 406
[6] She X, Huang A Q, Lucia O and Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193
[7] Daghbouj N, Li B S, Callisti M, Sen H S, Karlik M and Polcar T 2019 Acta Mater. 181 160
[8] Choi J H, Pala M, Latu-Romain L and Bano E 2012 Mater. Sci. Forum 717-720 561
[9] Huang Z, Lü T Y, Wang H Q and Zheng J C 2015 AIP Adv. 5 097204
[10] Kim J G, Choi Y Y, Choi D J and Choi S M 2011 J. Electron. Mater. 40 840
[11] Masuda M, Mabuchi H, Tsuda H, Matsui T and Morii K 2002 Mater. Sci. Forum 389-393 763
[12] Li J, Porter L and Yip S 1998 J. Nucl. Mater. 255 139
[13] Senor D J, Youngblood G E, Moore C E, Trimble D J, Newsome G A and Woods J J 1996 Fusion Technol. 30 943
[14] Kawamura T, Hori D, Kangawa Y, Kakimoto K, Yoshimura M and Mori Y 2008 Jpn. J. Appl. Phys. 47 8898
[15] Sparavigna A 2002 Phys. Rev. B 66 174301
[16] Wang F, Zhou Y, Gao S X, Duan Z G, Sun Z P, Wang J, Zou Y and Fu B Q 2022 Acta Phys. Sin. 71 036501 (in Chinese)
[17] Wang Q, Gui N, Huang X L, Yang X T, Tu J Y and Jiang S Y 2021 Int. J. Heat Mass Transfer 180 121822
[18] Ni Y X, Xiong S Y, Volz S and Dumitrica T 2014 Phys. Rev. Lett. 113 124301
[19] Goel N, Webb III E B, Rickman J M, Oztekin A and Neti S 2016 AIP Adv. 6 075101
[20] Zimbone M, Barbagiovanni E G, Bongiorno C, Calabretta C, Calcagno L, Fisicaro G, La Magna A and La Via F 2020 Cryst. Growth Des. 20 3104
[21] Yamasaki J, Inamoto S, Nomura Y, Tamaki H and Tanaka N 2012 J. Phys. D: Appl. Phys. 45 494002
[22] Marinova M, Mercier F, Mantzari A, Galben I, Chaussende D and Polychroniadis E K 2009 Physica B 404 4749
[23] Zimbone M, Sarikov A, Bongiorno C, Marzegalli A, Scuderi V, Calabretta C, Miglio L and La Via F 2021 Acta Mater. 213 116915
[24] Lin Y R, Ho C Y, Hsieh C Y, Chang M T, Lo S C, Chen F R and Kai J J 2014 Appl. Phys. Lett. 104 121909
[25] Goela J S, Brese N E, Pickering M A and Graebner J E 2001 MRS Bull. 26 458
[26] Iwata H P, Lindefelt U, Öberg S and Briddon P R 2003 Phys. Rev. B 68 113202
[27] Carrete J, López-Suárez M, Raya-Moreno M, Bochkarev A S, Royo M, Madsen G K H, Cartoixá X, Mingo N and Rurali R 2019 Nanoscale 11 16007
[28] Yan X X, Liu C Y, Gadre C A, Gu L, Aoki T, Lovejoy T C, Dellby N, Krivanek O L, Schlom D G, Wu R Q and Pan X Q 2021 Nature 589 65
[29] Goel N, Webb III E B, Oztekin A, Rickman J M and Neti S 2015 J. Appl. Phys. 118 115101
[30] Liu Y G, Zhang J W, Ren G L and Chernatynskiy A 2022 Int. J. Heat Mass Transfer 189 122700
[31] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426
[32] Sun Y D, Zhou Y G, Han J, Liu W, Nan C W, Lin Y H, Hu M and Xu B 2019 npj Comput. Mater. 5 97
[33] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[34] Fu B Q, Sun Y D, Zhang L F, Wang H and Xu B 2021 arXiv prep rint arXiv: 2110.10843 [cond-mat.mtrl-sci]
[35] Gronbech-Jensen N 2020 Mol. Phys. 118 1662506
[36] Phillpot S R and McGaughey A J H 2005 Mater. Today 8 18
[37] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2016 Phys. Rev. E 93 052141
[38] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[39] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[40] Mizokami K, Togo A and Tanaka I 2018 Phys. Rev. B 97 224306
[41] Crocombette J P and Gelebart L 2009 J. Appl. Phys. 106 083520
[42] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305
[43] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[44] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2012 J. Nucl. Mater. 427 268
[45] Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304
[46] Watanabe T, Ni B, Phillpot S R, Schelling P K and Keblinski P 2007 J. Appl. Phys. 102 063503
[47] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901
[48] Rurali R, Colombo L, Cartoixá X, Wilhelmsen O, Trinh T T, Bedeaux D and Kjelstrup S 2016 Phys. Chem. Chem. Phys. 18 13741
[49] Polanco C A and Lindsay L 2019 Phys. Rev. B 99 075202
[50] Little W A 1959 Can. J. Phys. 37 334
[51] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[52] Dickey J M and Paskin A 1969 Phys. Rev. 188 1407
[53] Qian X, Zhou J W and Chen G 2021 Nat. Mater. 20 1188
[54] Wang T S, Gui Z G, Janotti A, Ni C Y and Karandikar P 2017 Phys. Rev. Mater. 1 034601
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
Jia-Hao Chen(陈嘉豪), Ying Wang(王颖), Xin-Xing Fei(费新星), Meng-Tian Bao(包梦恬), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(9): 098505.
[3] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[4] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[5] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[6] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[7] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[8] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[9] Application of silicon carbide temperature monitors in 49-2 swimming-pool test reactor
Guang-Sheng Ning(宁广胜), Li-Min Zhang(张利民), Wei-Hua Zhong(钟巍华), Sheng-Hong Wang(王绳鸿), Xin-Yu Liu(刘心语), Ding-Ping Wang(汪定平), An-Ping He(何安平), Jian Liu(刘健), and Chang-Yi Zhang(张长义). Chin. Phys. B, 2023, 32(5): 056102.
[10] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[11] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[12] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[13] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[14] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[15] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
Jia-Hao Xiong(熊佳豪), Zi-Jun Qi(戚梓俊), Kang Liang(梁康), Xiang Sun(孙祥), Zhan-Peng Sun(孙展鹏), Qi-Jun Wang(汪启军), Li-Wei Chen(陈黎玮), Gai Wu(吴改), and Wei Shen(沈威). Chin. Phys. B, 2023, 32(12): 128101.
No Suggested Reading articles found!