Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066801    DOI: 10.1088/1674-1056/ac92d6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates

Rui Hou(侯锐)1,2 and Shenyuan Yang(杨身园)1,2,†
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  To investigate the mechanism of remote epitaxy, where the overlayer can follow the same crystalline structure as the underlying semiconductor substrate through a thin two-dimensional interlayer, we systematically study the potential fluctuations of graphene covered Si, GaAs, and GaN substrates from first-principles. We find that the uneven semiconductor surface, the distorted graphene, and the non-uniform interface charge transfer make significant contributions to the potential fluctuation. The semiconductor substrate with different surface reconstructions and orientations will generate different potential fluctuations through the graphene interlayer. We also calculate and compare the adsorption of adatoms on graphene covered substrates. The adsorption energies of adatoms not only depend on their distances to the underlying semiconductor surface, but are also sensitive to the direction of the charge transfer at the graphene/substrate interface. Changing the semiconductor reconstruction or orientation could even reverse the order of the adsorption energies of cation and anion adatoms by reversing the interface charge transfer direction, leading to a change in the growth orientation of the overlayer. Our study improves the understanding of the mechanism of remote epitaxy, and reveals that it is possible to control the initial nucleation and orientation of overlayers by changing the semiconductor reconstructions and/or orientations in remote epitaxy.
Keywords:  interface      adsorption      remote epitaxy      first-principles  
Received:  15 August 2022      Revised:  15 August 2022      Accepted manuscript online:  19 September 2022
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202) and the National Natural Science Foundation of China (Grant No. 12074369).
Corresponding Authors:  Shenyuan Yang     E-mail:  syyang@semi.ac.cn

Cite this article: 

Rui Hou(侯锐) and Shenyuan Yang(杨身园) A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates 2023 Chin. Phys. B 32 066801

[1] Chung K, Lee C H and Yi G C2010 Science 330 655
[2] Hong Y J, Lee C H, Yoon A, Kim M, Seong H K, Chung H J, Sone C, Park Y J and Yi G C2011 Adv. Mater. 23 3284
[3] Yang J, Yan D and Jones T S2015 Chem. Rev. 115 5570
[4] Wang C H, Cheng K Y, Yang S J and Hwang F C1985 J. Appl. Phys. 58 757
[5] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A and Jones K A1998 Appl. Phys. Lett. 73 348
[6] Currie M T, Samavedam S B, Langdo T A, Leitz C W and Fitzgerald E A1998 Appl. Phys. Lett. 72 1718
[7] Luan H C, Lim D R, Lee K K, Chen K M, Sandland J G, Wada K and Kimerling L C1999 Appl. Phys. Lett. 75 2909
[8] Andre C L, Wilt D M, Pitera A J, Lee M L, Fitzgerald E A and Ringel S A2005 J. Appl. Phys. 98 014502
[9] Daruka I and Barabási A L1997 Phys. Rev. Lett. 79 3708
[10] Massies J and Grandjean N1993 Phys. Rev. Lett. 71 1411
[11] Song T L, Chua S J, Fitzgerald E A, Chen P and Tripathy S2003 Appl. Phys. Lett. 83 1545
[12] Camarero J, Ferrón J, Cros V, Gómez L, Vázquez de Parga A L, Gallego J M, Prieto J E, de Miguel J J and Miranda R1998 Phys. Rev. Lett. 81 850
[13] Utama M I B, Zhang Q, Zhang J, Yuan Y, Belarre F J, Arbiol J and Xiong Q2013 Nanoscale 5 3570
[14] Alaskar Y, Arafin S, Wickramaratne D, Zurbuchen M A, He L, McKay J, Lin Q, Goorsky M S, Lake R K and Wang K L2014 Adv. Funct. Mater. 24 6629
[15] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W and Sadana D K2014 Nat. Commun. 5 4836
[16] Dang W, Peng H, Li H, Wang P and Liu Z2010 Nano Lett. 10 2870
[17] Liu Y, Weinert M and Li L2012 Phys. Rev. Lett. 108 115501
[18] Gehring P, Gao B F, Burghard M and Kern K2012 Nano Lett. 12 5137
[19] Munshi A M, Dheeraj D L, Fauske V T, Kim D C, van Helvoort A T J, Fimland B O and Weman H2012 Nano Lett. 12 4570
[20] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J and Kim J2017 Nature 544 340
[21] Kong W, Li H, Qiao K, et al.2018 Nat. Mater. 17 999
[22] Badokas K, Kadys A, Mickevičius J, Ignatjev I, Skapas M, Stanionytė S, Radiunas E, Juška G and Malinauskas T2021 J. Phys. D 54 205103
[23] Jeong J, Wang Q, Cha J, Jin D K, Shin D H, Kwon S, Kang B K, Jang J H, Yang W S, Choi Y S, Yoo J, Kim J K, Lee C H, Lee S, Zakhidov A A, Hong S, Kim M J and Hong Y J2020 Sci. Adv. 6 eaaz5180
[24] Journot T, Okuno H, Mollard N, Michon A, Dagher R, Gergaud P, Dijon J, Kolobov A V and Hyot B2019 Nanotechnology 30 505603
[25] Chang H, Chen Z, Li W, Yan J, Hou R, Yang S, Liu Z, Yuan G, Wang J, Li J, Gao P and Wei T2019 Appl. Phys. Lett. 114 091107
[26] Chen Z, Liu Z, Wei T, Yang S, Dou Z, Wang Y, Ci H, Chang H, Qi Y, Yan J, Wang J, Zhang Y, Gao P, Li J and Liu Z2019 Adv. Mater. 31 1807345
[27] Jeong J, Min K A, Shin D H, Yang W S, Yoo J, Lee S W, Hong S and Hong Y J2018 Nanoscale 10 22970
[28] Jeong J, Min K A, Kang B K, Shin D H, Yoo J, Yang W S, Lee S W, Hong S and Hong Y J2018 Appl. Phys. Lett. 113 233103
[29] Jeong J, Jin D K, Cha J, Kang B K, Wang Q, Choi J, Lee S W, Mikhailovskii V Y, Neplokh V, Amador-Mendez N, Tchernycheva M, Yang W S, Yoo J, Kim M J, Hong S and Hong Y J2020 ACS Appl. Nano Mater. 3 8920
[30] Jiang J, Sun X, Chen X, et al.2019 Nat. Commun. 10 4145
[31] Wang D, Lu Y, Meng J, Zhang X, Yin Z, Gao M, Wang Y, Cheng L, You J and Zhang J2019 Nanoscale 11 9310
[32] Jia R, Kum H S, Sun X, Guo Y, Wang B, Fang P, Jiang J, Gall D, Lu T M, Washington M, Kim J and Shi J2021 J. Vac. Sci. Technol. A 39 040405
[33] Guo Y, Sun X, Jiang J, Wang B, Chen X, Yin X, Qi W, Gao L, Zhang L, Lu Z, Jia R, Pendse S, Hu Y, Chen Z, Wertz E, Gall D, Feng J, Lu T M and Shi J2020 Nano Lett. 20 33
[34] Yoo D, Lee K, Tchoe Y, Guha P, Ali A, Saroj R K, Lee S, Islam A B M H, Kim M and Yi G C2021 Sci. Rep. 11 17524
[35] Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H and Yi G C2011 Adv. Mater. 23 4614
[36] Kresse G and Furthmuller J1996 Phys. Rev. B 54 11169
[37] Blöchl P E1994 Phys. Rev. B 50 17953
[38] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[39] Monkhorst H J and Pack J D1976 Phys. Rev. B 13 5188
[40] Grimme S, Antony J, Ehrlich S and Krieg H2010 J. Chem. Phys. 132 154104
[41] Niu M, Li D, Sheng B, Shao X, Liu W and Wang Z2011 2011 IEEE International Conference on Mechatronics and Automation, August 7-10, 2011 Beijing, China, p. 1423
[42] Kim Y S, Marsman M, Kresse G, Tran F and Blaha P2010 Phys. Rev. B 82 205212
[43] Zhang Z, Qian Q, Li B and Chen K J2018 ACS Appl. Mater. Interfaces 10 17419
[44] Leszczynski M, Teisseyre H, Suski T, Grzegory I, Bockowski M, Jun J, Porowski S, Pakula K, Baranowski J M, Foxon C T and Cheng T S1996 Appl. Phys. Lett. 69 73
[45] Pavlova T V, Zhidomirov G M and Eltsov K N2018 J. Phys. Chem. C 122 1741
[46] Henkelman G, Arnaldsson A and Jónsson H2006 Comput. Mater. Sci. 36 354
[47] Ohtake A2008 Surf. Sci. Rep. 63 295
[48] Schmidt W G and Bechstedt F1996 Surf. Sci. 360 L473
[49] Smith A R, Feenstra R M, Greve D W, Neugebauer J and Northrup J E1997 Phys. Rev. Lett. 79 3934
[50] Smith A R, Feenstra R M, Greve D W, Shin M S, Skowronski M, Neugebauer J and Northrup J E1998 J. Vac. Sci. Technol. B 16 2242
[51] Pashley D W1999 Mater. Sci. Technol. 15 2
[52] Chan K T, Neaton J B and Cohen M L2008 Phys. Rev. B 77 235430
[53] Rani B and Dharamvir K2014 Int J Quantum Chem 114 1619
[1] First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100) interface
Haoran Zhu(祝浩然), Weifeng Xie(谢伟锋), Xin Liu(刘欣), Yang Liu(刘杨),Jinli Zhang(张金利), and Xu Zuo(左旭). Chin. Phys. B, 2023, 32(7): 077303.
[2] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[3] Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects
Ye Tu(涂野), Yong Li(李勇), and Guanchao Yin(殷官超). Chin. Phys. B, 2023, 32(6): 068101.
[4] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[5] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[6] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[7] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[8] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[9] Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇). Chin. Phys. B, 2023, 32(5): 057305.
[10] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[11] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[12] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[13] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[14] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[15] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
No Suggested Reading articles found!