Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048102    DOI: 10.1088/1674-1056/ac7dbd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons

Ai-Gen Xie(谢爱根)1,2,3,†, Hong-Jie Dong(董红杰)1, and Yi-Fan Liu(刘亦凡)1
1 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science&Technology, Nanjing 210044, China;
3 Jiangsu international Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, Nanjing University of Information Science&Technology, Nanjing 210044, China
Abstract  The formulae for parameters of a negative electron affinity semiconductor (NEAS) with large mean escape depth of secondary electrons $\lambda $ (NEASLD) are deduced. The methods for obtaining parameters such as $\lambda $, $B$, $E_{\rm pom}$ and the maximum $\delta $ and $\delta $ at 100.0 ${\rm keV} \ge E_{\rm po} \ge 1.0 $ keV of a NEASLD with the deduced formulae are presented ($B$ is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter, $\delta $ is the secondary electron yield, $ E_{\rm po}$ is the incident energy of primary electrons and $E_{\rm pom}$ is the $E_{\rm po}$ corresponding to the maximum $\delta $). The parameters obtained here are analyzed, and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors. The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated, and it is concluded that the presented method of obtaining $\lambda $ is more accurate than that of obtaining the corresponding parameter for a NEAS with large $\lambda_{\rm ph}$ ($\lambda_{\rm ph}$ being the mean escape depth of photoelectrons), and that the presented method of calculating $B$ at $E_{\rm po} > 10.0 $ keV is more widely applicable for obtaining the corresponding parameters for a NEAS with large $\lambda_{\rm ph}$.
Keywords:  negative electron affinity semiconductor      secondary electron emission      photoemission      the probability      secondary electron yield      large mean escape depth of excited electrons  
Received:  09 April 2022      Revised:  30 June 2022      Accepted manuscript online:  02 July 2022
PACS:  81.90.+c (Other topics in materials science)  
  79.20.Hx (Electron impact: secondary emission)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  29.20.-c (Accelerators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11873013).
Corresponding Authors:  Ai-Gen Xie     E-mail:  xagth@126.com

Cite this article: 

Ai-Gen Xie(谢爱根), Hong-Jie Dong(董红杰), and Yi-Fan Liu(刘亦凡) Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons 2023 Chin. Phys. B 32 048102

[1] Jin X L, Ji P U, Zhuge L J, et al. 2022 Chin. Phys. B 31 027901
[2] Wang D, He Y N, Guo J J, et al. 2021 J. Appl. Phys. 129 093304
[3] Yater J E and Shih A 2000 J. Appl. Phys. 87 8103
[4] Ghale P and Johnson H 2019 Phys. Rev. B 99 155405
[5] Carson M, Woods W, Reynolds S, et al. 2021 IEEE. T. Nucl. Sci. 68 292
[6] Yang Q, Shen J, Jiang H, et al. 2021 ACS Photonics 8 1027
[7] Alperovich V L, Kazantsev D M, Zhuravlev A G, et al. 2021 Appl. Surf. Sci. 561 149987
[8] Xie A G, Pan Z, Dong H J, et al. 2021 Results. Phys. 20 103745
[9] Morishita H, Ohshima T, Kuwahara M, et al. 2020 J. Appl. Phys. 127 164902
[10] Joshi M and Ghanty T K 2020 Phys. Chem. Chem. Phys. 22 13368
[11] Xie A G, Yu Y, Chen Y Y, et al. 2019 Surf. Rev. Lett. 26 1850181
[12] Liao L 2015 Research and design of microwave micro-pulse electron gun (Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Science) pp. 1-134 (in Chinese)
[13] http://www.mc-set.com
[14] Martinelli R U 1970 Appl. Phys. Lett. 17 313
[15] Martinelli R U and Schultz M L 1972 J. Appl. Phys. 43 4803
[16] Martinelli R U and Ettenberg M 1974 J. Appl. Phys. 45 3896
[17] Gutierrez W A, Pommerrenig H D and Holt S L 1972 Appl. Phys. Lett. 21 249
[18] Cazaux J 2001 J. Appl. Phys. 89 8265
[19] Cazaux J 2001 Polym. Int. 50 748
[20] Yang Z, Chang B K, Zou J J, et al. 2007 Appl. Optics. 46 7035
[21] Andre J P, Guittard P, Hallais J, et al. 1981 J. Cryst. Growth. 55 235
[22] Du X Q, Chang B K and Wang G H 2002 Adv. Mater and Dev for Sens and Imaging. 4919 83
[23] Konishi K, Akimoto I, Isberg J, et al. 2020 Phys. Rev. B 102 195204
[24] Zeiske S, Kaiser C, Meredith P, et al. 2020 ACS. Photonics. 7 256
[25] Zhuravlev A G, Khoroshilov V S and Alperovich V L 2017 JETP. Letters. 105 686
[26] Zhuravle A G, Khoroshilov V S and Alperovich V L 2019 Appl. Surf. Sci. 483 895
[27] https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
[28] Ono S and Kanaya K 1979 J. Phys. D: Appl. Phys. 12 619
[29] Kanaya K and Kawakatsu H 1972 J. Phys. D: Appl. Phys. 5 1727
[30] https://www.baidu.com
[31] Xie A G, Zhang C Y and Zhong K 2014 Mod. Phys. Lett. B 28 1450046
[32] Xie A G, Dong H J and Pan Z 2021 Results. Phys. 28 104554
[33] Reuter W 1972 Proceedings of the Six International Conference on X-ray Optics and Microanalysis (Tokyo: Uinversity of Tokyo Press) pp. 121-130
[34] Xie A G, Li Q F, Chen Y Y, et al. 2013 Mod. Phys. Lett. B 27 1350238
[35] Reimer L and Drescher H 1977 J. Phys. D: Appl. Phys. 10 805
[36] Xie A G, Liu H Y, Yu Y, et al. 2018 Surf. Rev. Lett. 25 1850047
[37] Kanter H 1961 Phys. Rev. 121 461
[38] Xie A G, Zhao H F, Wang T B 2010 Nucl. Instrum. Methods. Phys. Res. B 268 687
[39] Seiler H 1983 J. Appl. Phys. 54 R1
[40] Bai C J, Hu T C, He Y, et al. 2021 Chin. Phys. B 30 17901
[41] Hu X C, Zhang X W, Zhang R, et al. 2020 Results. Phys. 19 103475
[42] Xie A G, Yu Y, Song C N, et al. 2019 Results. Phys. 15 102724
[43] Ling Z L and Wang X J 2013 Cathode Electronics, 1th edition (National defense industry Press) p. 192
[44] Fisher D G, Enstrom R E, Escher J S, et al. 1972 J. Appl. Phys. 43 3815
[45] Martinelli R U 1970 Appl. Phys. Lett. 16 261
[46] Xie A G, Pan Z and Chen Y Y 2020 Results. Phys. 18 103120
[47] Llacer J and Garwin E L 1969 J. Appl. Phys. 40 2766
[48] Alig R C and Bloom S 1978 J. Appl. Phys. 49 3476
[49] Adachi S 1989 J. Appl. Phys. 66 6030
[50] Rakić A D and Majewski M L 1996 J. Appl. Phys. 80 5909
[51] Ozaki S and Adachi S 1995 J. Appl. Phys. 78 3380
[52] Aspnes D E, Kelso S M, Logan R A, et al. 1986 J. Appl. Phys. 60 754
[53] Papatryfonos K, Angelova T, Brimont A, et al. 2021 AIP Adv. 11 025327
[54] Zhang Y J, Niu J, Zhao J, et al. 2010 J. Appl. Phys. 108 093108
[55] Zhang W L, Wang Y G, Wang S H, et al. 2021 Appl. Surf. Sci. 564 150419
[56] Bercx M, Partoens B and Lamoen D 2019 Phys. Rev. B 99 085413
[57] Ullah S, Wan G, Kouzios C, et al. 2021 Appl. Surf. Sci. 559 149962
[58] Yater J E and Shih A 2000 J. Appl. Phys. 87 8103
[59] Shih A, Yater J, Pehrsson P, et al. 1997 J. Appl. Phys. 82 1860
[1] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[2] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[3] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[4] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[5] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[6] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[9] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[10] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[11] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[12] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[13] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[14] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[15] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
No Suggested Reading articles found!