Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056104    DOI: 10.1088/1674-1056/ac4237
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores

Yanshuang Kang(康艳霜)1,2, Haijun Wang(王海军)1,3,4,†, and Zongli Sun(孙宗利)5,‡
1 College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;
2 College of Science, Hebei Agricultural University, Baoding 071001, China;
3 Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China;
4 Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China;
5 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
Abstract  Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.
Keywords:  free-energy average      rectangular corrugated pore      density functional  
Received:  06 September 2021      Revised:  24 November 2021      Accepted manuscript online: 
PACS:  61.20.Gy (Theory and models of liquid structure)  
  62.10.+s (Mechanical properties of liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.21503077),the Fundamental Research Fund for the Central Universities of China (Grant No.2020MS147),and the Science and Technology Project of Hebei Education Department,China (Grant No.QN2018119).
Corresponding Authors:  Haijun Wang,E-mail:whj@hbu.edu.cn;Zongli Sun,E-mail:sunzl@ncepu.edu.cn     E-mail:  whj@hbu.edu.cn;sunzl@ncepu.edu.cn
About author:  2021-12-11

Cite this article: 

Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利) Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores 2022 Chin. Phys. B 31 056104

[1] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018Chin. Phys. B 27 097309
[2] Sun C Z, Zhou R F, Zhao Z X and Bai B F 2020J. Phys. Chem. Lett. 11 4678
[3] Davis M E 2002Nature 417 813
[4] Thommes M and Cychosz K A 2014Adsorption 20 233
[5] Alothman Z A 2012Materials 5 2874
[6] Liu P S and Chen G F 2014Porous Materials: Processing and Applications (New York: Elsevier)
[7] Yang H Q, Xu Z H, Fan M H, Gupta R, Slimane R B, Bland A E and Wright I 2008J. Environ. Sci. 20 14
[8] Sanz-Pérez E S, Murdock C R, Didas S A and Jones C W 2016Chem. Rev. 116 11840
[9] Choi S, Drese J H and Jones C W 2009Chem. Sus. Chem. 2 796
[10] Wilms D, Winkler A, Virnau P and Binder K 2010Phys. Rev. Lett. 105 045701
[11] Schneider D, Kondrashova D and Valiullin R 2017Sci. Rep. 7 7216
[12] Krekelberg W P, Siderius D W, Shen V K, Truskett T M and Errington J R 2013Langmuir 29 14527
[13] Liu Y, Lorusso D, Holdsworth D W, Poepping T L and de Bruyn J R 2018J. Non-Newton Fluid 261 25
[14] Shen Z Y, Farutin A, Thiébaud M and Misbah C 2017Phys. Rev. Fluids 2 103101
[15] Peng B and Yu Y X 2008Langmuir 24 12431
[16] Sun Z L, Kang Y S, Kang Y M, Liu Z C and Ma H X 2012Chin. Phys. B 21 066103
[17] Zhou Y Q and Stell G 1989Mol. Phys. 66 767
[18] Zhou Y Q and Stell G 1989Mol. Phys. 66 791
[19] Zhou Y Q and Stell G 1989Mol. Phys. 68 1265
[20] Frenkel D and Smit B 2002Understanding Molecular Simulation: from Algorithms to Applications (London: Academic Press)
[21] Peterson B K and Gubbins K E 1987Mol. Phys. 62 215
[22] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys. 83 1888
[23] Li J, Wu K L, Chen Z X, Wang W Y, Yang B, Wang K, Luo J and Yu R J 2019Appl. Energy 251 113368
[24] Cui Z H, Fang H W, Huang L, Ni K and Reible D 2017J. Soils Sediments 17 2887
[25] Jagiello J, Kenvin J, Ania C O, Parra J B, Celzard A and Fierro V 2020Carbon 160 164
[26] Bojan M J and Steele W A 1988Surf. Sci. 199 L395
[27] Schoen M and Diestler D J 1997Phys. Rev. E 56 4427
[28] Bock H and Schoen M 1999Phys. Rev. E 59 4122
[29] Diestler D J and Schoen M 2000Phys. Rev. E 62 6615
[30] Porcheron F, Schoen M and Fuchs A H 2002J. Chem. Phys. 116 5816
[31] Wu H, Borhan A and Fichthorn K A 2010J. Chem. Phys. 133 054704
[32] Shahraz A, Borhan A and Fichthorn K A 2012Langmuir 28 14227
[33] Liu L M, Zeng Y H, Do D D, Nicholson D and Liu J J 2018Adsorption 24 1
[34] Malijevsky A and Parry A O 2013J. Phys.: Condens. Matter 25 305005
[35] Malijevsky A 2014J. Phys.: Condens. Matter 26 315002
[36] Malijevsky A and Parry A O 2019Phys. Rev. E 99 042804
[37] Malijevsky A 2019Phys. Rev. E 99 040801(R)
[38] Malijevsky A and Parry A O 2014J. Phys.: Condens. Matter 26 355003
[39] Jagiello J and Olivier J P 2013Carbon 55 70
[40] Jagiello J and Jaroniec M 2018J. Colloid Interface Sci. 532 588
[41] Jagiello J and Kenvin J 2019J. Colloid Interface Sci. 542 151
[42] Yatsyshin P, Savva N and Kalliadasis S 2015J. Phys.: Condens. Matter 27 275104
[43] Yatsyshin P, Parry A O, Rascón C and Kalliadasis S 2018Mol. Phys. 116 1990
[44] Neimark A V, Lin Y, Ravikovitch P I and Thommes M 2009Carbon 47 1617
[45] Landers J, Gor G Y and Neimark A V 2013Colloids Surf. A Physicochem. Eng. Aspects 437 3
[46] Khlyupin A and Aslyamov T 2017J. Stat. Phys. 167 1519
[47] Khlyupin A and Aslyamov T 2021Phys. Rev. E 103 022104
[48] Forte E, Haslam A J, Jackson G and Müller E A 2014Phys. Chem. Chem. Phys. 16 19165
[49] Ravipati S, Galindo A, Jackson G and Haslam A J 2019Phys. Chem. Chem. Phys. 21 25558
[50] Shi K H, Santiso E E and Gubbins K E 2019Langmuir 35 5975
[51] Steele W A 1973Surf. Sci. 36 317
[52] Evans R 1979Adv. Phys. 28 143
[53] Barker J A and Henderson D 1967J. Chem. Phys. 47 4714
[54] Cotterman R L, Schwarz B J and Prausnitz J M 1986AIChE J. 32 1787
[55] Yu Y X and Wu J Z 2002J. Chem. Phys. 117 10156
[56] Sears M P and Frink L J D 2003J. Comput. Phys. 190 184
[57] Sauer E and Gross J 2017Ind. Eng. Chem. Res. 56 4119
[58] Yu Y X 2009J. Chem. Phys. 131 024704
[59] Peng B and Yu Y X 2008J. Phys. Chem. B 112 15407
[60] Liu Y, Liu H L, Hu Y and Jiang J W 2010J. Phys. Chem. B 114 2820
[61] Fu J, Liu Y, Tian Y and Wu J Z 2015J. Phys. Chem. C 119 5374
[62] Johnson J K, Zollweg J A and Gubbins K E 1993Mol. Phys. 78 591
[63] Carnahan N F and Starling K E 1969J. Chem. Phys. 51 635
[64] Sun Z L, Kang Y S and Kang Y M 2019Ind. Eng. Chem. Res. 58 15637
[65] Sun Z L, Kang Y S and Kang Y M 2019Chin. Phys. B 28 036102
[66] Snook I K and van Megen W 1980J. Chem. Phys. 72 2907
[67] Gardner L, Kruk M and Jaroniec M 2001J. Phys. Chem. B 105 12516
[68] Magda J J, Tirrell M and Davis H T 1985J. Chem. Phys. 83 1888
[69] Jagiello J, Ania C, Parra J B and Cook C 2015Carbon 91 330
[70] Balbuena P B, Berry D and Gubbins K E 1993J. Phys. Chem. 97 937
[71] Frink L J D and van Swol F 1998J. Chem. Phys. 108 5588
[72] Ghatak C and Ayappa K G 2004J. Chem. Phys. 120 9703
[73] Leroy F and Müller-Plathe F 2010J. Chem. Phys. 133 044110
[74] Evans R and Marconi U M B 1987J. Chem. Phys. 86 7138
[75] Quéré D 2008Annu. Rev. Mater. Res. 38 71
[76] Bridgman P W 1914Phys. Rev. 3 273
[77] Rowlinson J S and Swinton F L 1982Liquids and Liquid Mixtures (London: Butterworth)
[78] Tang Y P and Lu B C Y 1997AIChE J. 43 2215
[79] Kolafa J and Nezbeda I 1994Fluid Phase Equilib. 100 1
[80] Mecke M, Müller A, Winkelmann J, Vrabec J, Fischer J, Span R and Wagner W 1996Int. J. Thermophys. 17 391
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!