Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128401    DOI: 10.1088/1674-1056/ac012c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure

Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新)
Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
Abstract  Using first-principles calculations combined with the Boltzmann transport theory, we explore the thermoelectric properties of natural superlattice (SL) structure Sb2Te. The results show that n-type Sb2Te possesses larger Seebeck coefficient of 249.59 (318.87) μV/K than p-type Sb2Te of 219.85 (210.38) μV/K and low lattice thermal conductivity of 1.25 (0.21) W/mK along the in-plane (out-of-plane) direction at 300 K. The excellent electron transport performance is mainly attributed to steeper density of state around the bottom of conduction band. The ultralow lattice thermal conductivity of Sb2Te is mainly caused by low phonon group velocity and strong anharmonicity. Further analysis shows that the decrease of group velocity comes from flatter dispersion curves which are contributed by the Brillouin-zone folding. The strong anharmonicity is mainly due to the presence of lone-pair electrons in Sb2Te. Combining such a high Seebeck coefficient with the low lattice thermal conductivity, maximum n-type thermoelectric figure of merit (ZT) of 1.46 and 1.38 could be achieved along the in-plane and out-of-plane directions at room temperature, which is higher than the reported values of Sb2Te3. The findings presented here provide insight into the transport property of Sb2Te and highlight potential applications of thermoelectric materials at room temperature.
Keywords:  thermoelectric      superlattice (SL)      thermal conductivity      phonons  
Received:  02 March 2021      Revised:  30 April 2021      Accepted manuscript online:  14 May 2021
PACS:  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  73.21.Cd (Superlattices)  
  65.40.-b (Thermal properties of crystalline solids)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974300, 11974299, and 11704319), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30645), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 20K127, 20A503, and 20B582), the Program for Changjiang Scholars and Innovative Research Team in Universities (Grant No. IRT13093), and the Hunan Provincial Innovation Foundation for Postgraduate Students, China (Grant No. CX20200624).
Corresponding Authors:  Tao Ouyang, Jianxin Zhong     E-mail:  ouyangtao@xtu.edu.cn;jxzhong@xtu.edu.cn

Cite this article: 

Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新) Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure 2021 Chin. Phys. B 30 128401

[1] Majumdar A 2004 Science 303 777
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Zhang X and Zhao L D 2015 J. Mater. 1 92
[4] Wang Z, Zhao L, Mak K F and Shan J 2017 Nano Lett. 17 740
[5] Hansson J, Nilsson T M, Ye L and Liu J 2018 Int. Mater. Rev. 63 22
[6] Takabatake T, Suekuni K, Nakayama T and Kaneshita E 2014 Rev. Mod. Phys. 86 669
[7] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[8] Jia P Z, Zeng Y J, Wu D, Pan H, Cao X H, Zhou W X, Xie Z X, Zhang J X and Chen K Q 2019 J. Phys.:Condens. Matter 32 055302
[9] Cupo A and Meunier V 2017 J. Phys.:Condens. Matter 29 283001
[10] Landry E S, Hussein M I and McGaughey A J H 2008 Phys. Rev. B 77 184302
[11] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P and Cailla T 2003 Int. Mater. Rev. 48 45
[12] Boettner H, Chen G and Venkatasubramanian R 2006 MRS Bull. 31 211
[13] Capinski W S and Maris H J 1996 Physica B 219-220 699
[14] Capinski W S, Maris H J, Ruf T, Cardona M, Ploog K and Katzer D S 1999 Phys. Rev. B 59 8105
[15] Lee S M, Cahill D G and Venkatasubramanian R 1997 Appl. Phys. Lett. 70 2957
[16] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[17] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[18] Chong T C, Shi L P, Zhao R, Tan P K, Li J M, Lee H K, Miao X S, Du A Y and Tung C H 2006 Appl. Phys. Lett. 88 122114
[19] Tong H, Miao X S, Cheng X M, Wang H, Zhang L, Sun J J, Tong F and Wang J H 2011 Appl. Phys. Lett. 98 101904
[20] Long P, Tong H and Miao X 2012 Appl. Phys. Express 5 031201
[21] Luo H, Gibson Q, Krizan J and Cava R J 2014 J. Phys.:Condens. Matter 26 206002
[22] Agafonov V, Rodier N, Céolin R, Bellissent R, Bergman C and Gaspard J 1991 Acta Crystallog. Sec. C 47 1141
[23] Zhu M, Wu L, Rao F, Song Z, Li X, Peng C, Zhou X, Ren K, Yao D and Feng S 2011 J. Alloys Compd. 509 10105
[24] Darmawikarta K, Lee B S, Shelby R M, Raoux S, Bishop S G and Abelson J R 2013 J. Appl. Phys. 114 034904
[25] Zheng Y, Cheng Y, Zhu M, Ji X, Wang Q, Song S, Song Z, Liu W and Feng S 2016 Appl. Phys. Lett. 108 052107
[26] Liu G, Wu L, Zhu M, Song Z, Rao F, Song S and Cheng Y 2017 Solid-State Electron. 135 31
[27] Meng Y, Ji X, Han P, Song Z, Zhou W, Guo W, Qian B and Wu L 2015 ECS Solid State Lett. 4 P4
[28] Guo S, Xu L, Zhang J, Hu Z, Li T, Wu L, Song Z and Chu J 2016 Sci. Rep. 6 33639
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Hafner J 2008 J. Comput. Chem. 29 2044
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[34] Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[35] Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[36] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[37] Fan D D, Liu H J, Cheng L, Jiang P H, Shi J and Tang X F 2014 Appl. Phys. Lett. 105 133113
[38] Sun P P, Bai L, Kripalani D R and Zhou K 2019 npj Comput. Mater. 5 9
[39] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
[40] Zhu X L, Hou C H, Zhang P, Liu P F, Xie G and Wang B T 2020 J. Phys. Chem. C 124 1812
[41] Zhu X L, Yang H, Zhou W X, Wang B, Xu N and Xie G 2020 ACS Appl. Mater. Interfaces 12 36102
[42] Xing G, Sun J, Li Y, Fan X, Zheng W and Singh D J 2017 Phys. Rev. Mater. 1 065405
[43] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[44] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[45] Li W, Lindsay L, Broido D, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[46] Hinsche N F, Yavorsky B Y, Mertig I and Zahn P 2011 Phys. Rev. B 84 165214
[47] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[48] Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348
[49] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C J N m 2013 Nat. Mater. 12 554
[50] Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[51] Jonson M and Mahan G D 1980 Phys. Rev. B 21 4223
[52] Sales B C, Mandrus D, Chakoumakos B C, Keppens V and Thompson J R 1997 Phys. Rev. B 56 15081
[53] Dyck J S, Chen W, Uher C, Drašar Č and Lošt'ák P 2002 Phys. Rev. B 66 125206
[54] Wu Y Y, Zhu X L, Yang H Y, Wang Z G, Li Y H and Wang B T 2020 Chin. Phys B 29 087202
[55] Xie G, Ding D and Zhang G 2018 Adv. Phys. X 3 1480417
[56] Xie G, Ju Z, Zhou K, Wei X, Guo Z, Cai Y and Zhang G 2018 npj Comput. Mater. 4 21
[57] Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C, Hu M and Zhong J 2018 Modelling and Simulation in Materials Science and Engineering 26 085006
[58] Wang W, Yan X, Poudel B, Ma Y, Hao Q, Yang J, Chen G and Ren Z 2008 J. Nanosci. Nanotechnol. 8 452
[59] Dhar S N and Desai C F 2010 Philos. Mag. Lett. 82 581
[60] Jacquot A, Farag N, Jaegle M, Bobeth M, Schmidt J, Ebling D and Böttner H 2010 J. Electron. Mater. 39 1861
[61] Heremans J P, Cava R J and Samarth N 2017 Nat. Rev. Mater. 2 17049
[62] Chen G and Neagu M 1997 Appl. Phys. Lett. 71 2761
[63] G C 1998 Phys. Rev. B 57 14958
[64] Tamura S I, Tanaka Y and Maris H J 1999 Phys. Rev. B 60 2627
[65] Wang H, Qin G, Qin Z, Li G, Wang Q and Hu M 2018 J. Phys. Chem. Lett. 9 2474
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[10] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[11] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[12] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!