Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120303    DOI: 10.1088/1674-1056/ac051e
GENERAL Prev   Next  

Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential

Dong-Mei Wang(王冬梅)1, Jian-Chong Xing(邢健崇)1, Rong Du(杜荣)1, Bo Xiong(熊波)2,†, and Tao Yang(杨涛)1,3,4,‡
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710127, China;
2 School of Science, Wuhan University of Technology, Wuhan 430070, China;
3 School of Physics, Northwest University, Xi'an 710127, China;
4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
Abstract  We study dynamical behaviors of a Bose-Einstein condensate (BEC) containing a dark soliton reflected from potential wells and potential barriers, respectively. The orientation angle of the dark soliton and the width of the potential change play key roles on the reflection probability Rs. Variation of the reflection probability with respect to the orientation angle θ of the dark soliton can be well described by a cosine function Rs~cos[λ(θ-π/2)], where λ is a parameter determined by the width of the potential change. There are two characteristic lengths which determine the reflection properties. The dependence of the reflection probability on the width of the potential change shows distinct characters for potential wells and potential barriers. The length of the dark soliton determines the sensitive width of potential wells, whereas for potential barriers, the decay length of the matter wave in the region of the barrier qualifies the sensitive width of the barrier. The time evolution of the density profiles of the system during the reflection process is studied to disclose the different behaviors of matter waves in the region of the potential variation.
Keywords:  Bose-Einstein condensate      dark soliton      quantum reflection  
Received:  28 March 2021      Revised:  19 April 2021      Accepted manuscript online:  26 May 2021
PACS:  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.45.Yv (Solitons)  
  34.50.-s (Scattering of atoms and molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775178, 12075175, 11934015, and 12047502), the Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant Nos. 2017KCT-12 and 2017ZDJC-32), and the Open Research Fund of Shaanxi Key Laboratory for Theoretical Physics Frontiers (Grant No. SXKLTPF-K20190602).
Corresponding Authors:  Bo Xiong, Tao Yang     E-mail:  boxiongpd@gmail.com;yangt@nwu.edu.cn

Cite this article: 

Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛) Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential 2021 Chin. Phys. B 30 120303

[1] Friedrich H and Trost J 2004 Phys. Rep. 397 359
[2] Landau L D, Landau L D and Landau L D 1992 Lehrbuch der Theoretischen Physik I!I!I. Quantenmechanik (Europa Lehrmittel Verlag)
[3] Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C I and Aspect A 1996 Phys. Rev. Lett 77 1464
[4] Segev B, Côté R and Raizen M G 1997 Phys. Rev. A 56 R3350
[5] Côté R, Segev B and Raizen M G 1998 Phys. Rev. A 58 3999
[6] Pasquini T A, Saba M, Jo G B, Shin Y, Ketterle W, Pritchard D E, Savas T A and Mulders N 2006 Phys. Rev. Lett 97 093201
[7] Dufour G, Guérout R, Lambrecht A, Nesvizhevsky V V, Reynaud S and Voronin A Yu 2013 Phys. Rev. A 87 022506
[8] Zhao B S, Schewe H C, Meijer G and Schöllkopf W 2010 Phys. Rev. A 105 133203
[9] Shimizu F 2001 Phys. Rev. Lett. 86 987
[10] Scott R G, Martin A M, Fromhold T M and Sheard F W 2005 Phys. Rev. Lett. 95 073201
[11] Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E and Ketterle W 2004 Phys. Rev. Lett. 93 223201
[12] Silvestre M, Cysne Tarik P, Szilard D, Pinheiro F A and Farina C 2019 Phys. Rev. A 100 033605
[13] Judd T E, Scott R G, Martin A M, Kaczmarek B and Fromhold T M 2011 New J. Phys. 13 083020
[14] Cornish S L, Parker N G, Martin A M, Judd T E, Scott R G, Fromhold T M and Adams C S 2009 Physica D 238 1299
[15] Dodd, Roger K, Eilbeck, Chris J, John D, Morris and Hedley C 1982 Solitons and Nonlinear Wave Equations (New York:Academic Press)
[16] Hirota and Ryogo 1973 J. Math. Phys. 14 810
[17] Kuznetsov E A, Rubenchik A M and Zakharov V E 1987 Physics Reports 142 103
[18] Lonngren K E 2000 Plasma Phys. 25 943
[19] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
[20] Gibbon J D, Caudrey P J, Bullough R K and Eilbeck J C 1973 Lettere Al Nuovo Cimento 8 775
[21] Zabusky N J 1968 Phys. Rev. 168 124
[22] Newell A C 1980 The Inverse Scattering Transform (Berlin:Springer)
[23] Proukakis N P, Parker N G, Frantzeskakis D J and Adams C S 2004 J. Opt. B 6 S380
[24] Wu M Z, Kalinikos B A and Patton C E 2004 Phys. Rev. Lett. 93 157207
[25] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
[26] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[27] Denschlag J, Simsarian J E, Feder D L, Clark Charles W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K and Reinhardt W P 2000 Science 287 97
[28] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K and Reinhardt W P 1999 Generating Solitons by Phase Engineering of a Bose-Einstein Condensate (Laser Cooling:Bose-Einstein Condensation and Atom Laser-Proceedings of CCAST (World Laboratory Workshop)
[29] Stellmer S, Becker C, Soltan-Panahi P, Richter E-M, Dörscher S, Baumert M, Kronjäger J, Bongs K and Sengstock K 2008 Phys. Rev. Lett. 101 120406
[30] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett. 86 2926
[31] Engels P and Atherton C 2007 Phys. Rev. Lett. 99 160405
[32] Chang J J, Engels P and Hoefer M A 2008 Phys. Rev. Lett. 101 170404
[33] Jo G B, Choi J H, Christensen C A, Pasquini T A, Lee Y R, Ketterle W and Pritchard D E 2007 Phys. Rev. Lett. 98 180401
[34] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
[35] Jurisch A and Rost J M 2010 Phys. Rev. A 81 043610
[36] Scott R G, Hutchinson D A W and Gardiner C W 2006 Phys. Rev. A 74 053605
[37] Martin A D, Adams C S and Gardiner S A 2007 Phys. Rev. Lett. 98 020402
[38] Martin A D, Adams C S and Gardiner S A 2008 Phys. Rev. A 77 013620
[39] Lee C and Brand J 2005 Europhys. Lett. 73 321
[40] Xu T F, Zhang Y F, Xu L C and Li Z D 2017 Chin. Phys. B 26 100304
[41] Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A 87 013614
[42] M Liu, L She, H W Xiong and M S Zhan 2006 Phys. Rev. A 74 043619
[43] Martin A M, Scott R G and Fromhold T M 2007 Phys. Rev. A 75 065602
[44] Cheng Q L, Bai W K, Zhang Y Z, Xiong B and Yang T 2019 Laser Phys. 29 015501
[45] Sciacca M, Barenghi C F and Parker N G 2017 Phys. Rev. A 95 013628
[46] Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P and Hadzibabic Z 2013 Phys. Rev. Lett. 110 200406
[47] Meyrath T P, Schreck F, Hanssen J L, Chuu C S and Raizen M G 2005 Phys. Rev. A 71 041604(R)
[48] Xiong B, Yang T and Benedict K A 2013 Phys. Rev. A 88 043602
[49] Yang T, Xiong B and Benedict K A 2013 Phys. Rev. A 87 023603
[50] Liu Z, Jia W G, Wang H Y, Wang Y, Neimule M K and Zhang J P 2020 Chin. Phys. B 29 064212
[51] Xu T F, Li W L, Li Z D and Zhang C 2018 Chaos, Solitons & Fractals 111 62
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[10] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[11] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[12] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[13] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[14] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[15] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
No Suggested Reading articles found!