Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120302    DOI: 10.1088/1674-1056/ac05a8
GENERAL Prev   Next  

Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors

Ji-Hao Fan(樊继豪)1,†, Jun Li(李骏)1,‡, Han-Wu Chen(陈汉武)2, and Wen-Jie Liu(刘文杰)3
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;
3 School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  In most practical quantum mechanical systems, quantum noise due to decoherence is highly biased towards dephasing. The quantum state suffers from phase flip noise much more seriously than from the bit flip noise. In this work, we construct new families of asymmetric quantum concatenated codes (AQCCs) to deal with such biased quantum noise. Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries, in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise, respectively. We generalize the original concatenation scheme to a more general case for better correcting degenerate errors. Moreover, we focus on constructing nonbinary AQCCs that are highly degenerate. Compared to previous literatures, AQCCs constructed in this paper show much better parameter performance than existed ones. Furthermore, we design the specific encoding circuit of the AQCCs. It is shown that our codes can be encoded more efficiently than standard quantum codes.
Keywords:  asymmetric quantum codes      concatenated code      quantum channel      degenerate code  
Received:  12 April 2021      Revised:  14 May 2021      Accepted manuscript online:  27 May 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61802175, 61871120, 61872184, and 62071240) and the Fundamental Research Funds for the Central Universities, China (Grant No. NZ2020021).
Corresponding Authors:  Ji-Hao Fan, Jun Li     E-mail:  jihao.fan@outlook.com;jun.li@njust.edu.cn

Cite this article: 

Ji-Hao Fan(樊继豪), Jun Li(李骏), Han-Wu Chen(陈汉武), and Wen-Jie Liu(刘文杰) Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors 2021 Chin. Phys. B 30 120302

[1] Tang G Z, Sun S H and Li C Y 2020 Chin. Phys. Lett. 36 070301
[2] Tian Y L, Feng T F and Zhou X Q 2019 Acta Phys. Sin. 68 110302 (in Chinese)
[3] Cheng X, Zhao Y C, Y C Wu and Guo G P 2021 Chin. Phys. Lett. 38 030302
[4] Ketkar A, Klappenecker A, Kumar S and Sarvepalli P K 2006 IEEE Trans. Inf. Theory 52 4892
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University) pp. 426-510
[6] Dumer I, Kovalev A A and Pryadko L P 2015 Phys. Rev. Lett. 115 050502
[7] Sarvepalli P K, Klappenecker A and Rötteler M 2009 Roy. Soc. A 465 1645
[8] Tuckett D K, Darmawan A S, Chubb C T, Bravyi S, Bartlett S D and Flammia S T 2019 Phys. Rev. X 9 041031
[9] Ezerman M F, Jitman S, Kiah H M and Ling S 2013 Int. J. Quantum Inf. 11 1350027
[10] Wang L, Feng K, Ling S and Xing C P 2010 IEEE Trans. Inf. Theory 56 2938
[11] Galindo C, Geil O, Hernando F and Ruano D 2017 IEEE Trans. Inf. Theory 64 2444
[12] Christensen R B and Geil O 2020 Finite Fields Appl. 68 101742
[13] Aliferis P and Preskill J 2008 Phys. Rev. A 78 052331
[14] Brooks P and Preskill J 2013 Phys. Rev. A 87 032310
[15] Tuckett D K, Bartlett S D and Flammia S T 2018 Phys. Rev. Lett. 120 050505
[16] Tuckett D K, Bartlett S D, Flammia S T and Brown B J 2020 Phys. Rev. Lett. 124 130501
[17] Nadkarni P J and Garani S S 2017 Proceedings of the 2017 IEEE Information Theory Workshop, November 6-10, Kaohsiung, Taiwan, p. 219
[18] Nadkarni P J and Garani S S 2020 IEEE Trans. Quantum Eng. 1 2101417
[19] Lin S and Costello D J 2004 Error Control Coding:Fundamentals and Applications (New Jersey:Prentice-Hall) p. 739
[20] Fan J H, Li J, Wang J X, Wei Z H and Hsieh M H 2021 IEEE Trans. Commun. 69 3971
[21] Christandl M and Müller-Hermes A 2021 Proceedings of the 24rd Annual Conference on Quantum Information Processing, February 1-5, 2021, Munchen, Germany, p. 233, arXiv:2009.07161
[22] Ezerman M F, Jitman S, Ling S and Pasechnik D V 2013 IEEE Trans. Inf. Theory 59 6732
[23] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[24] MacWilliams F J and Sloane N J A 1981 The Theory of Error-Correcting Codes (Amsterdam:North-Holland 1981) p. 93
[25] Maucher J, Zyablov V V and Bossert M 2000 IEEE Trans. Inf. Theory 46 642
[26] Guardia G G La 2012 Quantum Inf. Process. 11 591
[27] Guardia G G La 2014 Int. J. Theor. Phys. 53 2312
[28] Grassl M 2007 Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, 2007
[29] Ezerman M F, Ling S and Sole P 2011 IEEE Trans. Inf. Theory 57 5536
[30] Ashikhmin A, Litsyn S and Tsfasman M A 2001 Phys. Rev. A 63 032311
[31] Gottesman D 1996 Phys. Rev. A 54 1862
[32] Grassl M, Beth T and Rötteler M 2004 Int. J. Quantum Inf. 2 55
[33] Zhu X Y, Tu T, Guo A L, Zhou Z Q and Guo G C 2020 Chin. Phys. Lett. 37 020302
[34] Gong B, Tu T, Guo A L, Zhu L T and Li C F 2021 Chin. Phys. Lett. 38 044201
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[6] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[7] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
No Suggested Reading articles found!