Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073201    DOI: 10.1088/1674-1056/abe1a4
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields

Xi Zhao(赵曦)1,5,6, Gangtai Zhang(张刚台)2,†, Tingting Bai(白婷婷)3, Jun Wang(王俊)4,‡, and Wei-Wei Yu(于伟威)7,§
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
2 College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China;
3 College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China;
4 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
5 Department of Physics, Kansas State University, Manhattan, KS 66506, USA;
6 School of Physics and Electronics, Qiannan Normal College for Nationalities, Duyun 558000, China;
7 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
Abstract  Electron-electron correlation plays an important role in the underlying dynamics in physics and chemistry. Helium is the simplest and most fundamental two-electron system. The dynamic process of helium in a strong laser field is still a challenging issue because of the large calculation cost. In this study, a graphic processing unit (GPU) openACC based ab initio numerical simulations package HeTDSE is developed to solve the full-dimensional time-dependent Schrödinger equation of helium subjected to a strong laser pulse. HeTDSE uses B-spline basis sets expansion method to construct the radial part of the wavefunction, and the spherical harmonic functions is used to express for the angular part. Adams algorithm is employed for the time propagation. Our example shows that HeTDSE running on an NVIDIA Kepler K20 GPU can outperform the one on an Intel E5-2640 single CPU core by a factor of 147. HeTDSE code package can be obtained from the author or from the author's personal website (doi: 10.13140/RG.2.2.15334.45128) directly under the GPL license, so HeTDSE can be downloaded, used and modified freely.
Keywords:  strong field physics      TDSE      OPENACC      GPU      electron correlation      helium  
Received:  10 August 2020      Revised:  27 January 2021      Accepted manuscript online:  01 February 2021
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported the National Natural Science Foundation of China (Grant Nos. 11904192, 11604119, 11627807, and 11604131), the Natural Science Basic Research Plan of Shaanxi Province of China (Grant No. 2016JM1012), the Natural Science Foundation of the Education Committee of Shaanxi Province of China (Grant No. 18JK0050), the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK16069), and the Natural Science Foundation of Liaoning Province of China (Grant No. LQ 2020022).
Corresponding Authors:  Gangtai Zhang, Jun Wang, Wei-Wei Yu     E-mail:  gtzhang79@163.com;wangjun86@jlu.edu.cn;weiweiyu2012@163.com

Cite this article: 

Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威) HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields 2021 Chin. Phys. B 30 073201

[1] Xi Zhao's personal Researchgate website https://www.researchgate.net/publication/348786906_HeTDSE, with DOI: 10.13140/RG.2.2.15334.45128
[2] Shintake T et al. 2008 Nat. Photon. 2 555
[3] Ackermann W et al. 2007 Nat. Photon. 1 336
[4] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[5] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[6] Xia C L, Ge X L, Zhao X, Guo J and Liu X S 2012 Phys. Rev. A 85 025802
[7] Guo J, Ge X L, Zhong H Y, Zhao X, Zhang M, Jiang Y F and Liu X S 2014 Phys. Rev. A 90 053410
[8] Zhang J, Pan X F, Zhao X, Guo J, Zhu K G and Liu X S 2019 J. Opt. 21 125503
[9] Zhao Y, Ma S, Jiang S, Yang Y, Zhao X and Chen J 2019 Opt. Express 27 34392
[10] Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Phys. Rev. A 101 033413
[11] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874
[12] Qiao Y, Wu D, Chen J G, Wang J, Guo F M and Yang Y J 2020 Phys. Rev. A 100 063428
[13] Jin C, Tang X, Li B, Wang K and Lin C D 2020 Phys. Rev. Appl. 14 014057
[14] Zhang Z, Peng L Y, Xu M H, Starace A F, Morishite T and Gong Q H 2011 Phys. Rev. A 84 043409
[15] Martin J M, Bade S, Dubosclard W, Khan M A, Kim S, Garraway B M and Alzar C L G 2019 Phys. Rev. Appl. 12 014033
[16] Lopez C, Trimeche A, Comparat D and Picard Y J 2019 Phys. Rev. Appl. 11 064049
[17] Guan J, Behrendt V, Shen P, Hofsass S, Muthu-Arachchige T, Grzesiak J, Stienkemeier F and Dulitz K 2019 Phys. Rev. Appl. 11 054073
[18] Griesser H P, Perrella C, Light P S and Luiten A N 2019 Phys. Rev. Appl. 11 054026
[19] Luo Y and Zhang P 2019 Phys. Rev. Appl. 12 044056
[20] Chen P, Wang X, Luan Y, Fei Z, Lacroix B, Lei S and Das S R 2020 J. Appl. Phys. 128 024305
[21] Zhang Z 2012 PhD Dissertation (Beijing: Peking University) (in Chinese)
[22] Kinoshita T 1956 Phys. Rev. 105 1490
[23] Coulson C A and Neilson A H 1961 Proc. Phys. Soc. 78 831
[24] Curl R F and Coulson C A 1965 Proc. Phys. Soc. 85 647
[25] Colgan J and Pindzola M S 2002 Phys. Rev. Lett. 88 173002
[26] Feng L and van der Hart H W 2003 J. Phys. B 36 L1
[27] Laulan S and Bachau H 2003 Phys. Rev. A 68 013409
[28] Piraux B, Bauer J, Laulan S and Bachau H 2003 Eur. Phys. J. D 26 7
[29] Hu S X, Colgan J and Collins L A 2005 J. Phys. B 38 L35
[30] Foumouo E, Kamta G L, Edah G and Piraux B 2006 Phys. Rev. A 74 063409
[31] Guan X, Bartschat K and Schneider B I 2008 Phys. Rev. A 77 043421
[32] Shi T Y and Lin C D 2002 Phys. Rev. Lett. 89 163202
[33] Hasegawa H, Takahashi E J, Nabekawa Y, Ishikawa K L and Midorikawa K 2005 Phys. Rev. A 71 023407
[34] Nabekawa Y, Hasegawa H, Takahashi E J andMidorikawa K 2005 Phys. Rev. Lett. 94 043001
[35] Antoine P, Foumouo E, Piraux B, Shimizu T, Hasegawa H, Nabekawa Y and Midorikawa K 2008 Phys. Rev. A 78 023415
[36] Sorokin A A, Wellhöfer M, Bobashev S V, Tiedtke K and Richter M 2007 Phys. Rev. A 75 051402(R)
[37] Rudenko A, Foucar L, Kurka M, Ergler T, Kühnel K U, Jiang Y H, Voitkiv A, Najjari B, Kheifets A, Lüdemann S, Havermeier T, Smolarski M, Schssler S, Cole K, Schöffler M, Dörner R, Düsterer S, Li W, Keitel B, Treusch R, Gensch M, Schröter C D, Moshammer R and Ullrich J 2008 Phys. Rev. Lett. 101 073003
[38] Kurka M et al. 2010 New J. Phys. 12 073035
[39] Zhang Z, Peng L Y, Gong Q H and Morishite T 2010 Opt. Express 18 8976
[40] Parker J S, Moore L R, Meharg K J, Dundas D and Taylor K T 2001 J. Phys. B 34 L69
[41] Zhang B, Yuan J and Zhao Z 2015 Comput. Phys. Commun. 194 84
[42] Drake G W F 2006 Springer Handbook of Atomic, Molecular and Optical Physics (New York: Springer) pp. 205-206
[43] Thibault J C and Senocak I 2009 CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows in Proceedings of the 47th AIAA Aerospace Sciences Meeting Orlando, Florida, USA,
[44] NVIDIA CUDA ZONE. https://developer.nvidia.com/cuda-zone. version 4.0, 2011
[45] Komura Y 2015 Comput. Phys. Commun. 197 298
[46] Stone J E, Phillips J C, Freddolino P L, Hardy D J, Trabuco L G and Schulten K 2007 J. Comput. Chem.28 2618
[47] Cheng W L, Sheharyar A, Sadr R and Bouhali O 2015 Comput. Phys. Commun. 182 39
[48] Broin C and Nikolopoulos L A A 2014 Comput. Phys. Commun. 184 1791
[49] Nguyen T D 2017 Comput. Phys. Commun. 212 113
[50] Exl L 2017 Comput. Phys. Commun. 221 352
[51] OpenACC official website. http://www.openacc-standard.org/
[52] Venuti M and Decleva P 1997 J. Phys. B 30 4839
[53] Nepstad R, Birkeland T and Forre M 2010 Phys. Rev. A 81 063402
[54] Hasbani R, Cormier E and Bachau H 2000 J. Phys. B 33 2101
[55] Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815
[56] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407
[57] Zhao X, Wei H, Wei C and Lin C D 2017 J. Opt. 19 114009
[58] Shi T Y, Bao C G and Li B W 2001 Commun. Theor. Phys. 35 195
[59] Scrinzi A and Piraux B 1998 Phys. Rev. A 58 1310
[60] Yu W, Zhao X, Wei H, Wang S J and Lin C D 2019 Phys. Rev. A 99 033403
[61] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B C, Chen J G and Lin C D 2020 Phys. Rev. Appl. 13 034043
[62] Zhao X, Wei H, Yu W and Lin C D 2018 Phys. Rev. A 98 053404
[63] Shampine L F and Gordon M K 1975 Computer Solution of Ordinary Differential Equations: The Initial Value Problem (San Francisco, CA: Freeman)
[64] Li H, Sautenkov V A, Rostovtsev Y V, Kash M M, Anisimov P M, Welch G R and Scully M O 2010 Phys. Rev. Lett. 104 103001
[65] Zhao X, Chen J, Fu P, Liu X, Yan Z and Wang B 2013 Phys. Rev. A 87 043411
[66] Zhao X, Yang Y, Liu X and Wang B 2014 Chin. Phys. Lett. 31 043202
[67] Peng D, Wu B, Fu P, Wang B, Gong J and Yan Z C 2010 Phys. Rev. A 82 053407
[68] Nakajima T and Watanabe S 2006 Phys. Rev. Lett. 96 213001
[69] Zhai Z, Peng D, Zhao X, Guo F, Yang Y, Fu P, Chen J, Yan Z C and Wang B 2012 Phys. Rev. A 86 043432
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[3] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[4] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[5] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[6] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[7] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[8] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[9] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[10] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[11] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[12] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[13] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[14] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[15] Effects of electron correlation and the Breit interaction on one- and two-electron one-photon transitions in double K hole states of He-like ions (10≤Z≤47)
Xiaobin Ding(丁晓彬), Cunqiang Wu(吴存强), Mingxin Cao(曹铭欣), Denghong Zhang(张登红), Mingwu Zhang(张明武), Yingli Xue(薛迎利), Deyang Yu(于得洋), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(3): 033101.
No Suggested Reading articles found!