Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030301    DOI: 10.1088/1674-1056/abcf3d
GENERAL Prev   Next  

Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states

Guang Yang(杨光)†, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲)
1 School of Communications and Information Engineering & School of Artificial Intelligence, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Entanglement swapping is a key technology for multi-hop communication based on entanglement in quantum networks. However, the end-to-end delay of the traditional sequential entanglement swapping (SEQES) grows rapidly with the increase of network scale. To solve this problem, we first propose a low-delay multi-particle simultaneous entanglement swapping (SES) scheme to establish the remote four-particle Greenberger-Horne-Zeilinger (GHZ) channel states for the bidirectional teleportation of three-particle GHZ states, in which the intermediate nodes perform Bell state measurements, send the measurement results and the Bell state type to the user node Bob (or Alice) through classical channel simultaneously. Bob (or Alice) only needs to carry out a proper unitary operation according to the information he (or she) has received. Further, we put forward a hierarchical simultaneous entanglement swapping (HSES) scheme to reduce the classical information transmission cost, which is composed of level-1 SES and level-2 SES (schemes). The former is an inner segment SES, and the latter is an inter segments SES. Theoretical analysis and simulation results show the HSES can obtain the optimal performance tradeoff between end-to-end delay and classical cost.
Keywords:  multi-hop quantum communication      entanglement swapping      teleportation      multi-particle  
Received:  10 August 2020      Revised:  08 November 2020      Accepted manuscript online:  01 December 2020
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61971348), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033).
Corresponding Authors:  Corresponding author. E-mail: sharon.yg@163.com   

Cite this article: 

Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲) Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states 2021 Chin. Phys. B 30 030301

1 Bennett C H, Brassard G, Cr\'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
2 Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307
3 Zhou R G, Chen Q and Hou I 2019 IEEE Access 7 42445
4 Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
5 Guo Y, Liu B H, Li C F and Guo G C 2019 Adv. Quantum Technol. 2 1900011
6 Tian M B and Zhang G F2018 Quantum Inf. Process. 17 19
7 Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
8 Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China-Phys. Mech. Astron. 62 110311
9 Du G H, Li H W, Wang Y and Bao W S 2019 Chin. Phys. B 28 090301
10 Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 44305
11 Li J, Zhou Z Y, Wang N, Tian Y, Yang Y G and Zheng Y 2019 IEEE Access 7 43948
12 Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362
13 Xu H X 2014 [J]. CAEIT 9 259 (in Chinese)
14 Takenaka H, Carrasco-Casado A, Fujiwara M, Kitamura M, Sasaki M and Toyoshima M 2017 Nat. Photonics. 11 502
15 Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70
16 Zukowski M, Zeilinger A, Horne M A and Ekert A K 2018 Quantum Inf. Process. 17 19
17 Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Area. Comm 23 1424
18 Zhou X Q, Wu Y W and Zhao H 2011 Acta Phys. Sin. 60 040304 (in Chinese)
19 Chen P, Cai Y X, Cai X F, Shi L H and Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese)
20 Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese)
21 Liu X H, Nie M and Pei CX 2013 Acta Phys. Sin. 62 200304 (in Chinese)
22 Wang K, Yu X T, Lu S L and Gong Y X 2014 Phys. Rev. A 89 022329
23 Cai R, Yu X T and Zhang Z C 2018 Int. J. Theor. Phys. 57 1723
24 Gao X Q, Zhang Z C and Sheng B 2018 J. Mod. Opt. 65 1698
25 Gao X Q, Zhang Z C and Sheng B 2018 Front. Phys. 13 130314
26 Zou Z Z, Yu X T and Zhang Z C 2018 Front. Phys. 13 130202
27 Zhang Z H, Wang J W and Sun M 2018 Int. J. Theor. Phys 57 3605
28 Deng F G, Li CY, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
29 He X L, Liu M and Yang C P 2015 Quantum Inf. Process. 14 1055
30 Sun S Y, Li L X and Zhang H S 2020 Int. J. Theor. Phys. 59 1017
31 Zha X W, Zou Z C, Qi J X and Song H Y 2013 Int. J. Theor. Phys. 52 1740
32 Yang G, Lian B, Nie M and Jin J 2017 Chin. Phys. B 26 040305
33 Zhou R G and Zhang Y N 2019 Int. J. Theor. Phys. 58 3594
34 Hillery M, Bu\vzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
35 Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D and Peng K C 2018 Phys. Rev. Lett. 121 150502
36 Qin H W and Dai Y W 2017 Quantum Inf. Process. 16 64
37 Xu G B, Wen Q Y, Gao F and Qin S J 2014 Quantum Inf. Process. 13 2587
38 Sun Z W, Yu J P and Wang P 2016 Quantum Inf. Process. 15 373
39 Cai T, Jiang M and Cao G 2018 Quantum Inf. Process. 17 103
40 Braunstein S L and Mann A 1995 Phys. Rev. A 51 R1727
41 L\"utkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295
42 Calsamiglia J and L\"utkenhaus N 2001 Appl. Phys. B 72 67
43 Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
44 Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
45 Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664
46 Grice W P 2011 Phys. Rev. A 84 042331
47 Zaidi H A and van Loock P 2013 Phys. Rev. Lett. 110 260501
48 Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 R2623
49 Walborn S P, P\'adua S and Monken C H 2003 Phys. Rev. A 68 042313
50 Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L and Zhao S M 2013 Chin. Phys. B 22 030314
51 Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501
52 Williams B P, Sadlier R J and Humble T S 2017 Phys. Rev. Lett. 118 050501
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[14] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[15] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
No Suggested Reading articles found!