Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064204    DOI: 10.1088/1674-1056/23/6/064204

Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers

Zhang Xiao, Song Yan-Rong
Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Abstract  The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrödinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.
Keywords:  mode-locked fiber lasers      carbon nanotubes      theory  
Received:  04 September 2013      Revised:  07 November 2013      Published:  15 June 2014
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Key Basic Research Progrm of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant No. 61177047), and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).
Corresponding Authors:  Song Yan-Rong     E-mail:

Cite this article: 

Zhang Xiao, Song Yan-Rong Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers 2014 Chin. Phys. B 23 064204

[1] Hernandez-Romano I, Mandridis D, May-Arrioja D A, Sanchez-Mondragon J J and Delfyett P J 2011 Opt. Lett. 36 2122
[2] Baylam I, Ozharar S, Cankaya H, Choi S Y, Kim K, Rotermund F, Griebner U, Petrov V and Sennaroglu A 2012 Opt. Lett. 37 3555
[3] Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729
[4] Hernandez-Romano I, Davila-Rodriguez J, Mandridis D, Sanchez-Mondragon J J, May-Arrioja D and P Delfyett J 2011 J. Lightwave Technol. 29 3237
[5] Zhao G Z, Xiao X S, Meng F, Mei J W and Yang C X 2013 Chin. Phys. B 22 104205
[6] Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Chin. Phys. B 21 064211
[7] Chen Y C, Raravikar N R, Schadler L S, Ajayan P M, Zhao Y P, Lu T M, Wang G C and Zhang X C 2002 Appl. Phys. Lett. 81 975
[8] Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 J. Lightwave Technol. 22 51
[9] Song Y, Set S Y, Yamashita S, Goh C S and Kotake T 2005 IEEE Photon. Technol. Lett. 17 1623
[10] Li X, Wang Y, Wang Y, Liu X, Zhao W, Hu X, Yang Z, Zhang W, Gao C, Shen D, Li C and Tsang Y H 2013 Opt. Laser Technol. 47 144
[11] Fang Q, Kieu K and Peyghambarian N 2010 IEEE Photon. Technol. Lett. 22 1656
[12] Shohda F, Shirato T, Nakazawa M, Komatsu K and Kaino T 2008 Opt. Express 16 21191
[13] Martinez A and Yamashita S 2011 Opt. Express 19 6155
[14] Nozaki Y, Nishizawa N, Omoda E, Kataura H and Sakakibara Y 2012 Opt. Express 37 5079
[15] Agrawal G 2001 Applications of Nonlinear Fiber Optics (Scan Diego: Academic Press)
[16] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[17] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
[18] Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y and Zhao W 2009 Opt. Express 17 8506
[19] Wang R, Dai Y, Yan L, Wu J, Xu K, Li Y and Lin J 2012 Opt. Express 20 6406
[20] Liu X M 2010 Phys. Rev. A 81 023811
[21] Liu X M 2010 Phys. Rev. A 82 063834
[22] Kong L J, Xiao X S and Yang C X 2011 Chin. Phys. B 20 024207
[23] Liu X M 2009 Opt. Express 17 22401
[24] Mao D, Liu X and Lu H 2012 Opt. Lett. 37 2619
[25] Tan S J, Ismail M A, Shahabuddin N S, Ahmad H, Arof H and Harun S W 2012 Laser Phys. 22 1240
[26] Song Y F, Zhang H, Tang D Y and Shen D Y 2012 Opt. Express 20 27283
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[8] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[9] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[10] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[11] Game theory model of exit selection in pedestrian evacuation considering visual range and choice firmness
Wei-Li Wang(王维莉), Fang-Fang Wan(万芳芳), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2020, 29(8): 084502.
[12] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[13] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[14] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[15] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
No Suggested Reading articles found!