Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044211    DOI: 10.1088/1674-1056/23/4/044211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design optimization of highly efficient spectrum-splitting and beam-concentrating diffractive optical element for lateral multijunction solar cells

Wang Jin-Ze (王进泽)a b, Ye Jia-Sheng (叶佳声)c, Huang Qing-Li (黄庆礼)a b, Xu Xin (许信)a b, Li Dong-Mei (李冬梅)a b, Meng Qing-Bo (孟庆波)a b, Yang Guo-Zhen (杨国桢)d
a Key Laboratory for Renewable Energy (CAS), Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Department of Physics, Capital Normal University; Beijing Key Laboratory for THz Spectroscopy and Imaging,Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048, China;
d Laboratory of Optical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spectrum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.
Keywords:  thickness optimization      solar cell      split      concentration      diffractive optical element  
Received:  12 November 2013      Revised:  17 December 2013      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  42.25.Fx (Diffraction and scattering)  
  42.79.Ek (Solar collectors and concentrators)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 91233202, 21173260, and 51072221) and the National Basic Research Program of China (Grant No. 2012CB932903.
Corresponding Authors:  Meng Qing-Bo, Yang Guo-Zhen     E-mail:  qbmeng@iphy.ac.cn;yanggz@iphy.ac.cn
About author:  42.15.Eq; 42.25.Fx; 42.79.Ek

Cite this article: 

Wang Jin-Ze (王进泽), Ye Jia-Sheng (叶佳声), Huang Qing-Li (黄庆礼), Xu Xin (许信), Li Dong-Mei (李冬梅), Meng Qing-Bo (孟庆波), Yang Guo-Zhen (杨国桢) Design optimization of highly efficient spectrum-splitting and beam-concentrating diffractive optical element for lateral multijunction solar cells 2014 Chin. Phys. B 23 044211

[1] Dimroth F and Kurtz S 2007 MRS Bull. 32 230
[2] Green M A and Ho-Baillie A 2010 Prog. Photovolt. Res. Appl. 18 42
[3] King R, Sherif R, Kinsey G, Kurtz S, Fetzer C, Edmondson K, Law D, Cotal H, Krut D, Ermer J and Karam N H 2005 International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, 1-5 May, 2005, Scottsdale, Arizona, p. 40
[4] Polman A and Atwater H A 2012 Nat. Mater. 11 174
[5] Tanabe K 2009 Energies 2 504
[6] Luque A 2011 J. Appl. Phys. 110 031301
[7] Imenes A G and Mills D R 2004 Sol. Energy Mater. Sol. Cells 84 19
[8] Ludman J E, Riccobono J, Semenova I V, Reinhand N O, Tai W, Li X, Syphers G, Rallis E, Sliker G and Martín J 1997 Solar Energy 60 1
[9] Bloss W H, Griesinger M and Reinhardt E R 1982 Appl. Opt. 21 3739
[10] Ludman J E 1982 Am. J. Phys. 50 244
[11] Stefancich M, Zayan A, Chiesa M, Rampino S, Roncati D, Kimerling L and Michel J 2012 Opt. Express 20 9004
[12] Huang Q L, Wang J Z, Quan B G, Zhang Q L, Zhang D X, Li D M, Meng Q B, Pan L, Wang Y Q and Yang G Z 2013 Appl. Opt. 52 2312
[13] Ye J S, Wang J Z, Huang Q L, Dong B Z, Zhang Y and Yang G Z 2013 Chin. Phys. B 22 34201
[14] Gu B Y, Yang G Z and Dong B Z 1986 Appl. Opt. 25 3197
[15] Liu R, Gu B Y, Dong B Z and Yang G Z 1998 J. Opt. Soc. Am. A 15 689
[16] International Electrotechnical Commission, International Standard, IEC 60904-3, Edition 2, 2008, ISBN 2-8318-9705-X
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[8] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[11] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[14] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!