Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024501    DOI: 10.1088/1674-1056/23/2/024501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On the modeling of synchronized flow in cellular automaton models

Jin Cheng-Jie (金诚杰)a, Wang Wei (王炜)a, Jiang Rui (姜锐)b
a School of Transportation, Southeast University of China, Nanjing 210096, China;
b School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, we further analyze our cellular automaton (CA) traffic flow model. By changing some parameters, the characteristics of our model can be significantly varied, ranging from the features of phase transitions to the number of traffic phases. We also review the other CA models based on Kerner’s three-phase traffic theory. By comparisons, we find that the core concepts for modeling the synchronized flow in these models are similar. Our model can be a good candidate for modeling the synchronized flow, since there is enough flexibility in our framework.
Keywords:  traffic flow      cellular automaton      synchronized flow      three-phase traffic theory  
Received:  21 March 2013      Revised:  17 May 2013      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400) and the Scientific Research Foundation of Graduate School of Southeast University, China.
Corresponding Authors:  Jin Cheng-Jie     E-mail:  yitaikongtiao@gmail.com
About author:  45.70.Vn; 05.40.-a; 02.60.Cb

Cite this article: 

Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐) On the modeling of synchronized flow in cellular automaton models 2014 Chin. Phys. B 23 024501

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Kerner B S 2004 Physica A 333 379
[4] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R1297
[5] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R4275
[6] Kerner B S and Rehborn H 1997 Phys. Rev. Lett. 79 4030
[7] Kerner B S 1998 Phys. Rev. Lett. 81 3797
[8] Treiber M and Helbing D 1999 J. Phys. A: Math. Gen. 32 L17
[9] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[10] Helbing D and Treiber M 2002 Coop. Trans. Dyn. 1 1.2.1–2.2.4
[11] Schönhof M and Helbing D 2007 Transp. Sci. 41 135
[12] Schönhof M and Helbing D 2009 Transp. Res. B 43 784
[13] Helbing D, Treiber M, Kesting A and Schönhof M 2009 Eur. Phys. J. B 69 583
[14] Treiber M and Helbing D 2003 Phys. Rev. E 68 046119
[15] Nishinari K, Treiber M and Helbing D 2003 Phys. Rev. E 68 067101
[16] Treiber M, Kesting A and Helbing D 2006 Phys. Rev. E 74 016123
[17] Treiber M, Kesting A and Helbing D 2010 Transp. Res. B 44 983
[18] Kerner B S and Klenov S L 2008 J. Phys. A: Math. Theor. 41 215101
[19] Kerner B S, Klenov S L and Schreckenberg M 2011 Phys. Rev. E 84 046110
[20] Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
[21] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[22] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[23] Jin C J, Wang W, Jiang R and Gao K 2010 J. Stat. Mech. P03018
[24] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[25] Jin C J and Wang W 2011 Physica A 390 4184
[26] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[27] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[28] Kerner B S 2002 Phys. Rev. E 65 046138
[29] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[30] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2004 Phys. Rev. E 70 016115
[31] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[32] Jiang R and Wu Q S 2004 J. Phys. A: Math. Gen. 37 8197
[33] Jiang R and Wu Q S 2005 Eur. Phys. J. B 46 581
[34] Gao K, Jiang R, Hu S X, Wang B H and Wu Q S 2007 Phys. Rev. E 76 026105
[35] Gao K, Jiang R, Wang B H and Wu Q S 2009 Physica A 388 3233
[36] Tian J F, Jia B, Li X G, Zhao X M and Gao Z Y 2009 Physica A 388 4827
[37] Zheng L, Ma S F and Zhong S Q 2011 Physica A 390 1072
[38] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[39] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[40] Lárraga M E and Alvarez-lcaza L 2010 Physica A 389 5425
[41] Kokubo S, Tanimoto J and Hagishima A 2011 Physica A 390 561
[42] Neto J P L, Lyra M L and da Silva C R 2011 Physica A 390 3558
[43] Jia B, Li X G, Chen T, Jiang R and Gao Z Y 2011 Transportmetica 7 127
[44] Tian J F, Yuan Z Z, Treiber M, Jia B and Zhang W Y 2012 Physica A 391 3129
[45] Tian J F, Yuan Z Z, Jia B, Fan H Q and Wang T 2012 Phys. Lett. A 376 2781
[46] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[47] Jiang R, Jin W L and Wu Q S 2008 Chin. Phys. B 17 829
[48] Zhuang Q, Jia B and Li X G 2009 Chin. Phys. B 18 3271
[49] He H D, Lu W Z and Dong L Y 2011 Chin. Phys. B 20 040514
[50] Chen X Q, Li L, Jiang R and Yang X M 2010 Chin. Phys. Lett. 27 074501
[51] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[52] Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 4138 (in Chinese)
[53] Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 2894 (in Chinese)
[54] Dai S Q, Xue Y and Lei L 2003 Acta Phys. Sin. 52 2121 (in Chinese)
[55] Zhao X M, Xie D F and Gao Z Y 2008 Chin. Phys. B 17 4440
[56] Kerner B S 2012 Phys. Rev. E 85 036110
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[4] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[5] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[6] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[7] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[8] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[9] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[10] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[11] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[12] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[13] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[14] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[15] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
No Suggested Reading articles found!