Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107102    DOI: 10.1088/1674-1056/22/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method

Hao Ai-Min (郝爱民), Bai Jing (白静)
School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Abstract  Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density functional theory (DFT) with the LDA+U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μB per unit cell.
Keywords:  first-principles calculations      strongly correlated system      electronic structure      magnetic properties  
Received:  05 March 2013      Revised:  17 April 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Eh (Rare earth metals and alloys)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB731600 and 2010CB731604-2).
Corresponding Authors:  Hao Ai-Min     E-mail:  aiminhao1991@aliyun.com

Cite this article: 

Hao Ai-Min (郝爱民), Bai Jing (白静) First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method 2013 Chin. Phys. B 22 107102

[1] Duan C G, Sabirianov R F, Mei W N, Dowben P A, Jaswal S S and Tsymbal E Y 2007 J. Phys.: Condens. Matter 19 315220
[2] Larson P, Lambrecht W R L, Chantis A and van Schilfgaarde M 2007 Phys. Rev. B 75 045114
[3] Preston A R H, Granville S, Housden D H, Ludbrook B, Ruck B J, Trodahl H J, Bittar A, Williams G V M, Downes J E, DeMasi A, Zhang Y, Smith K E and Lambrecht W R L 2007 Phys. Rev. B 76 245120
[4] Olcese G L 1979 J. Phys. F: Met. Phys. 9 569
[5] Aerts C M, Strange P, Home M, Temmerman W M, Szotek Z and Svane A 2004 Phys. Rev. B 69 045115
[6] Varma C M 1976 Rev. Mod. Phys. 48 219
[7] Patthey F, Imer J M, Schneider W D, Beck H, Baer Y and Delley B 1990 Phys. Rev. B 42 8864
[8] Delin A, Oppeneer P M, Brooks M S S, Kraft T, Wills J M, Johansson B and Eriksson O 1997 Phys. Rev. B 55 R10173
[9] Sclar N 1962 J. Appl. Phys. 33 2999
[10] Xiao S Q and Takai O 1998 Thin Solid Films 317 137
[11] Lee T Y, Gall D, Shin C S, Hellgren N, Petrov I and Greene J E 2003 J. Appl. Phys. 94 921
[12] Clark S, Segall M, Pickard C, Hasnip P, Refson K and Payne M 2005 Z. Kristallogr. 220 567
[13] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[14] Ali Z, Ahmad I, Khan B and Khan I 2013 Chin. Phys. Lett. 30 047504
[15] Anderson P W 1978 Rev. Mod. Phys. 50 191
[16] Nolan M, Parker S C and Watson G W 2005 Surf. Sci. 595 223
[17] Castleton C W M, Kullgren J and Hermansson K 2007 J. Chem. Phys. 127 244704
[18] Lu Z, Ma D, Zhang J, Xu G and Yang Z 2012 Chin. Phys. B 21 047505
[19] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[20] Pandit P, Srivastava V, Rajagopalan M and Sanyal S P 2008 Physica B 403 4333
[21] Jensen J and Mackintosh A R 1991 Rare Earth Magnetism (Oxford: Oxford Science)
[22] Casadei M, Ren X, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
[1] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[2] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[3] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!