Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050505    DOI: 10.1088/1674-1056/22/5/050505
GENERAL Prev   Next  

A new identification control for generalized Julia sets

Sun Jiea b, Liu Shu-Tanga
a College of Control Science and Engineering, Shandong University, Jinan 250061, China;
b School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Weihai 264209, China
Abstract  In this paper, we propose a new method to realize drive-response system synchronization control and parameter identification for a class of generalized Julia sets. By means of this method, the zero asymptotic sliding variables are applied to control the fractal identification. Furthermore, the problems of synchronization control are solved in the case of a drive system with unknown parameters, and the unknown parameters of the drive system can be identified in the asymptotic synchronization process. The results of simulation examples demonstrate the effectiveness of this new method. Particularly, the basic Julia set is also discussed.
Keywords:  Julia set      synchronization      parameter identification  
Received:  13 October 2012      Revised:  10 December 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  47.53.+n (Fractals in fluid dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61273088 and 11271194), the National Excellent Doctoral Dissertation of China (Grant No. 200444), and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010FM010 and ZR2011FQ035).
Corresponding Authors:  Sun Jie     E-mail:  sunj@sdu.edu.cn

Cite this article: 

Sun Jie, Liu Shu-Tang A new identification control for generalized Julia sets 2013 Chin. Phys. B 22 050505

[1] Mandelbrot B B 1977 Fractal: Form, Chance and Dimension (San Francisco: Freeman)
[2] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
[3] Isvoran A, Pitulice L and Creascu C T 2008 Chaos Soliton. Fract. 35 960
[4] Mobahed M S and Hermanis E 2008 Physica A 387 915
[5] Wang L, Zheng D Z and Lin Q S 2001 Computing Technology and Automation 20 1
[6] Wang X Y, Xie Y X and Qin X 2012 Chin. Phys. B 21 040504
[7] Wang X Y and He G X 2012 Chin. Phys. B 21 060502
[8] Wang X Y and Wang M J 2008 Acta Phys. Sin. 57 731 (in Chinese)
[9] Wang X Y and Meng Q Y 2004 Acta Phys. Sin. 53 388 (in Chinese)
[10] Wang X Y, Liu W and Yu X J 2007 Modern Physics Letters B 21 1321
[11] Wang L and Zheng D Z 2000 Control Theory and Applications 17 139
[12] Rani M and Negi A 2008 Chaos Soliton. Fract. 36 226
[13] Gao J Y 2011 Chaos Soliton. Fract. 44 871
[14] Wang X Y and Sun Y Y 2007 Computers and Mathematics with Applications 53 1718
[15] Wang X Y and Shi Q J 2006 Applied Mathematics and Computation 181 816
[16] Wang X Y and Yu X J 2007 Applied Mathematics and Computation 189 1186
[17] Yang W F 2010 Applied Mathematics and Computation 217 2490
[18] Argyris J, Karakasidis T E and Andreadis I 2000 Chaos Solitons. Fract. 11 2067
[19] Zhang Y P, Liu S T and Shen S L 2009 Chaos Solitons. Fract. 39 1811
[20] Liu P and Liu S T 2011 Communications in Nonlinear Science and Numerical Simulation 16 3344
[21] Zhang Y P, Sun W H and Liu S T 2009 Chaos Solitons. Fract. 42 1738
[22] Furuta K 1990 Syst. Cont. Lett. 14 145
[1] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[2] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[3] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[4] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[5] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[6] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[7] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[8] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[9] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[10] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[11] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[12] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[13] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
No Suggested Reading articles found!