Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077104    DOI: 10.1088/1674-1056/20/7/077104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Radiative life time of an exciton confined in a strained GaN/Ga1-xAlxN cylindrical dot: built-in electric field effects

Chang Woo Leea) and A. John Peterb)
a Department of Chemical Engineering and Green Energy Center, College of Engineering, Kyung Hee University, 1 Seochun, Gihung, Yongin, Gyeonggi 446-701, Republic of Korea; b Department of Physics, Government Arts and Science College, Melur-625106, India
Abstract  The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically. The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included. Numerical calculations are performed using a variational procedure within the single band effective mass approximation. Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed. The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton. It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased, and that the exciton binding energy, the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field. The obtained results are useful for the design of some opto-photoelectronic devices.
Keywords:  quantum dot      donor bound excitons      oscillator strength  
Accepted manuscript online: 
PACS:  71.35.-y (Excitons and related phenomena)  
  73.21.La (Quantum dots)  
  77.65 Ly  

Cite this article: 

Chang Woo Lee, A. John Peter Radiative life time of an exciton confined in a strained GaN/Ga1-xAlxN cylindrical dot: built-in electric field effects 2011 Chin. Phys. B 20 077104

[1] Damilano B, Grandjean N, Semond F, Massies J and Leroux M 1999 Appl. Phys. Lett. 75 962
[2] Damilano B, Grandjean N, Massies J and Semond F 2000 Appl. Surf. Sci. 164 241
[3] Thillosen N, Schäpers Th, Kaluza N, Hardtdegen H and Guzenko V A 2006 Appl. Phys. Lett. 88 022111
[4] Kurdak cC, Biyikli N, özgür ü, Morkocc H and Litvinov V I 2006 Phys. Rev. 74 113308
[5] Bernardini F, Fiorentini V and Vanderbilt D 2001 Phys. Rev. B 63 193201
[6] Zhao X, Wei S Y and Xia C X 2007 Physica E 39 209
[7] Andreev T, Hori Y, Biquard X, Monroy E, Jalabert D, Farchi A, Tanaka M, Oda O, Dang L S and Daudin B 2004 Superlatt. Microstruct. 36 707
[8] Moriwaki O, Someya T, Tachibana K, Ishida S and Arakawa Y 2000 Appl.Phys.Lett. 76 2361
[9] Kako S, Hoshino K, Iwamoto S, Ishida S and Arakawa Y 2004 Appl. Phys. Lett. 85 64
[10] Besombes L, Kheng K, Marsal L and Mariette H 2001 Phys. Rev. B 63 155307
[11] Xia C X and Wei S Y 2006 Microelectron. J. 37 1408
[12] Harrison P 2005 Quantum Wells, Wires and Dots (Chichester: Wiley)
[13] Vurgaftman I and Meyer J R 2001 J. Appl. Phys. 89 5815
[14] Voskoboynikov O, Bauga O, Lee C P and Tretyak O 2003 J. Appl. Phys. 94 5891
[15] Offermans P, Koenraad P M, Wolter J H, Pierz K, Roy M and Maksym P A 2005 Phys. Rev. B 72 165332
[16] Pikus G E and Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: Wiley)
[17] Chuang S L 1995 Physics of Optoelectronic Devices ( New York: John Wiley & Sons)
[18] Goff S L and Stebe B 1993 Phys. Rev. B 47 1383
[19] Shi J and Gan Z 2003 J. Appl. Phys. 94 407
[20] Simon J, Pelekanos N T, Adelmann C, Guerrero E M, Daudin B, Dang L S and Mariette H 2003 Phys. Rev. B 68 035312
[21] Szafran B, St'eb'e B, Adamowski J and Bednarek S 2002 it Phys. Rev. B 66 165331
[22] Xia C X and Wei S Y 2006 Microelectr. J. 37 1408
[23] Koga T, Nitta J, Takayanagi H and Datta S 2002 Phys. Rev. Lett. 88 126601
[24] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[25] Rol F, Founta S, Mariette H, Daudin B, Dang L S, Bleuse J, Peyrade D, Gerard J M and Gayral B 2007 Phys. Rev. B 75 125306
[26] Fonoberov V A and Balandin A A 2004 Appl. Phys. Lett. 85 5971
[27] Simon J, Pelekanos N T, Adelmann C, Martinez-Guerrero E, Andre R, Daudin B, Dang L S and Mariette H 2003 Phys. Rev. B bf 68 035312
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
No Suggested Reading articles found!