Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074202    DOI: 10.1088/1674-1056/27/7/074202

Super-resolution imaging via sparsity constraint and sparse speckle illumination

Pengwei Wang(王鹏威)1,2, Wei Li(李伟)2,3, Chenglong Wang(王成龙)1,2, Zunwang Bo(薄遵望)1, Wenlin Gong(龚文林)1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China
Abstract  We present an imaging approach via sparsity constraint and sparse speckle illumination which can dramatically enhance the optical system's imaging resolution. When the object is illuminated by some sparse speckles and the sparse reconstruction algorithm is utilized to restore the blur image, numerical simulated results demonstrate that the image, whose resolution exceeds the Rayleigh limit, can be stably reconstructed even if the detection signal-to-noise ratio (SNR) is less than 10 dB. Factors affecting the quality of the reconstructed image, such as the coded pattern's sparsity and the detection SNR, are also studied.
Keywords:  imaging      and      optical      processing     
Received:  05 February 2018      Published:  05 July 2018
PACS:  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61571427).
Corresponding Authors:  Wenlin Gong     E-mail:

Cite this article: 

Pengwei Wang, Wei Li, Chenglong Wang, Zunwang Bo, Wenlin Gong Super-resolution imaging via sparsity constraint and sparse speckle illumination 2018 Chin. Phys. B 27 074202

[1] Rayleigh L 1879 Philos. Mag. 5 261
[2] Park S C, Park M K and Kang M G 2003 IEEE Signal Process Mag. 20 21
[3] Szameit A, Segev M, Gazit S and Eldar Y C 2009 Opt. Express 17 23920
[4] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[5] Xue C B, Yao X R, Li L Z, Li X F, Yu W K, Guo X Y, Zhai G J and Zhao Q 2017 Chin. Phys. B 26 024203
[6] Yang J, Wright J, Huang T S and Ma Y 2010 IEEE Trans. Image Process. 19 2861
[7] Schulz R R and Stevenson R L 1996 IEEE Trans. Image Process. 5 996
[8] Elad M and Feuer A 1997 IEEE Trans. Image Process. 6 1646
[9] Gong W L and Han S S 2015 Sci. Rep. 5 9280
[10] Gong W L 2015 Photon. Res. 3 234
[11] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[12] Rust M J, Bates M and Zhuang X 2010 Nat. Methods 3 793
[13] Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M and Sentenac A 2012 Nat. Photon. 6 312
[14] York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A and Shroff H 2012 Nat. Methods 9 749
[15] Min J, Jang J, Keum D, Ryu S W, Choi C, Jeong K H and Ye J 2013 Sci. Rep. 2075
[16] Goodman J W 1968 Introduction to Fourier Optics (New York:McGraw-Hill)
[17] Hunt B R 1995 Int. J. Imaging Syst. Technol. 6 297
[18] Kolobov M I 2007 Quantum Imaging (New York:Springer) Chap. 6
[19] Zhang P, GongW, Shen X, Huang D and Han S 2009 Opt. Lett. 34 1222
[20] Lucy L B 1974 Astron. J. 79 745
[21] Richardson and William H 1972 J. Opt. Soc. Am. 62 55
[22] Zhao G Y, Zheng C, Fang Y, Kuang C F and Liu X 2017 Acta Phys. Sin. 66 148702
[1] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang, Yirong Wang, Chenhao Zhu, Yuxin Wang, Xiang Zhang, Kuiyi Gao, Wei Zhang. Chin. Phys. B, 2020, 29(9): 093203.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li, Debing Tan, Qiang Wang, Zhengguo Xiao, Changhai Tian, Lin Chen. Chin. Phys. B, 2020, 29(9): 098103.
[3] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang, Ze-Yu Zhang, Xiao-Wu Cai, Zi-Han Liu, Yong-Xiang Zhang, Zhen-Long Lv, Wei-Wei Ju, Hui-Hui Liu, Tong-Wei Li, Gang Liu, Hai-Sheng Li, Hai-Tao Yan, Min Feng. Chin. Phys. B, 2020, 29(9): 093601.
[4] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng, Zili Kou, Mengxi Zhao, Mingli Jiang, Jiawei Zhang, Yipeng Wang, Lu Zhang. Chin. Phys. B, 2020, 29(9): 090703.
[5] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao, Zeyuan Fei, Weiqu Chen, Zimin Chen, Xing Lu, Gang Wang, Xinzhong Wang, Jun Liang, Yanli Pei. Chin. Phys. B, 2020, 29(9): 097303.
[6] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang, Nan Zhao. Chin. Phys. B, 2020, 29(9): 090303.
[7] Study of optical clocks based on ultracold 171Yb atoms
Di Ai, Hao Qiao, Shuang Zhang, Li-Meng Luo, Chang-Yue Sun, Sheng Zhang, Cheng-Quan Peng, Qi-Chao Qi, Tao-Yun Jin, Min Zhou, Xin-Ye Xu. Chin. Phys. B, 2020, 29(9): 090601.
[8] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun, Yan-Hui Wang, Le-Le Song, Hai-Bin Du, Xiao-Chun Wang, Lan-Lai He, Si-Zuo Luo, Qin Yang, Jing Leng, Fu-Chun Liu. Chin. Phys. B, 2020, 29(9): 093201.
[9] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun, Yu-Ru Zhang, Sen Chai, You-Nian Wang, Yan-Yan Chu, Jian-Xin He. Chin. Phys. B, 2020, 29(9): 095203.
[10] Optical properties of core/shell spherical quantum dots
Shuo Li, Lei Shi, Zu-Wei Yan. Chin. Phys. B, 2020, 29(9): 097802.
[11] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng, Han-Ping Hu. Chin. Phys. B, 2020, 29(9): 090502.
[12] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li, Chun-Bao Ye, Juan Gao, Bing Wang. Chin. Phys. B, 2020, 29(8): 087302.
[13] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[14] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu, Yangzhe Guo, Bin Dong, Yurui Fang. Chin. Phys. B, 2020, 29(8): 087301.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang, Yan Xing. Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!