Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034202    DOI: 10.1088/1674-1056/23/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Transmission through array of subwavelength metallic slits curved with a single step or multi-step

Wang Ying-Qia b, Wang Yan-Huac, Zheng Xian-Huab, Ye Jia-Shengb, Zhang Yana b, Liu Shu-Tiana
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Physics, Capital Normal University, Beijing 100048, China;
c Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
Abstract  The transmission of normally incident plane wave through an array of subwavelength metallic slits curved with a single step or mutli-step has been explored theoretically. The transmission spectrum is simulated by using the finite-difference time-domain method. The influences of surface plasmon polaritons make the end of finite long sub-wavelength metallic slit behaves as magnetic-reflecting barrier. The electromagnetic fields in the subwavelength metallic slits are the superposition of standing wave and traveling wave. The standing electromagnetic oscillation behaves like LC oscillating circuit to decide the resonance wavelength. Therefore, the parameters of adding step may change the LC circuit and influence the transmission wavelength. A new explanation model is proposed in which the resonant wavelength is decided by four factors: the changed length for electric field, the changed length for magnetic field, the effective coefficient of capacitance, and the effective coefficient of inductance. The effect of adding step is presented to analyze the interaction of two steps in slit with mutli-step. This explanation model has been proved by the transmission through arrayed subwavelength metallic slits curved with two steps and fractal steps. All calculated results are well explained by our proposed model.
Keywords:  surface plasmon polaritons      metal optics     
Received:  17 April 2013      Published:  15 March 2014
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301801), the National Natural Science Foundation of China (Grant Nos. 10904099, 11174211, 11204188, and 61205097), and the Natural Science Foundation of Beijing, China (Grant No. KZ201110028035).
Corresponding Authors:  Wang Ying-Qi, Zhang Yan     E-mail:  wangyingqi.hit@gmail.com;yzhang@mail.cnu.edu.cn

Cite this article: 

Wang Ying-Qi, Wang Yan-Hua, Zheng Xian-Hua, Ye Jia-Sheng, Zhang Yan, Liu Shu-Tian Transmission through array of subwavelength metallic slits curved with a single step or multi-step 2014 Chin. Phys. B 23 034202

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[3] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[4] Matsui T, Agrawal A, Nahata A and Vardeny Z V 2007 Nature 446 517
[5] Genet C and Ebbesen T W 2007 Nature 445 39
[6] Dintinger J, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B 71 035424
[7] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
[8] Miyamaru F and Hangyo M 2005 Phys. Rev. B 71 165408
[9] Qu D X and Grischkowsky D 2004 Phys. Rev. Lett. 93 196804
[10] Rivas J G, Schotsch C, Bolivar P H and Kurz H 2003 Phys. Rev. B 68 201306
[11] Astilean S, Lalanne P and Palamaru M 2000 Opt. Commun. 175 265
[12] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[13] Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[14] Lalanne P, Sauvan C, Hugonin J P, Rodier J C and Chavel P 2003 Phys. Rev. B 68 125404
[15] Lee K G and Park Q H 2005 Phys. Rev. Lett. 95 103902
[16] Tsai M W, Chuang T H, Meng C Y, Chang Y T and Lee S C 2006 Appl. Phys. Lett. 88 071114
[17] Suckling J R, Hibbins A P, Lockyear M J, Preist T W and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[18] Xie Y, Zakharian A, Moloney J and Mansuripur M 2005 Opt. Express 13 4485
[19] Cheng C, Chen J, Wu Q Y, Ren F F, Xu J, Fan Y X and Wang H T 2007 Appl. Phys. Lett. 91 111111
[20] Ginzburg P and Orenstein M 2007 Opt. Express 15 6762
[21] Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2005 Opt. Express 13 6815
[22] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107
[23] Sun Z and Kim H K 2004 Appl. Phys. Lett. 85 642
[24] Lockyear M J, Hibbins A P and Sambles J R 2007 Appl. Phys. Lett. 91 251106
[25] Wang Y H, Wang Y Q, Zhang Y and Liu S T 2009 Opt. Express 17 5014
[26] Wang Y Q, Wang Y H, Ye J S, Zhang Y and Liu S T 2011 Opt. Commun. 284 877
[27] Ge D B and Yan Y B 2003 Electromagnetic Algorithm: The Finite-Difference Time-Domain method (Beijing: Electronic Science and Technology University Press)
[28] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd edn.) (Boston: Artech House)
[29] Baida F I and Labeke D V 2003 Phys. Rev. B 67 155314
[30] Gray S K and Kupka T 2003 Phys. Rev. B 68 045415
[31] Shao D B and Chen S C 2005 Opt. Express 13 6964
[32] Hibbins A P, Lockyear M J and Sambles J R 2006 J. Appl. Phys. 99 124903
[33] Liu H T and Lalanne P 2008 Nature 452 728
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong, Hou Zhang. Chin. Phys. B, 2020, 29(9): 094101.
[2] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi, Li-Yuan Wang, Yu Zhang, Ting Zhang, Bao-He Zhang, Xiang-Yu Deng, Xiang-Xian Wang. Chin. Phys. B, 2020, 29(6): 067303.
[3] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li, Konstantin Riegel, Chuanpu Liu, Alexey Taskin, Yoichi Ando, Zhimin Liao, Martin Dressel, Yuan Yan. Chin. Phys. B, 2020, 29(6): 067801.
[4] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao, Zhenhua Wu. Chin. Phys. B, 2020, 29(3): 034101.
[5] Properties of metal-insulator-metal waveguide loop reflector
Hu Long, Xuan-Ke Zeng, Yi Cai, Xiao-Wei Lu, Hong-Yi Chen, Shi-Xiang Xu, Jing-Zhen Li. Chin. Phys. B, 2019, 28(9): 094215.
[6] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang, Pan Li, Hancong Wang, Zhipeng Li. Chin. Phys. B, 2018, 27(9): 094216.
[7] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen, Ben-Kuan Zhou, Huang Zhang, Ling-Li Hong, Chang-Lin Zou, Ping Li, Wei-Dong Zhao, Xiao-Dong Liu, Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[8] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu, Di Liu, Xiao-Zhuo Qi, Xiao Xiong, Lan-Tian Feng, Ming Li, Guo-Ping Guo, Guang-Can Guo, Xi-Feng Ren. Chin. Phys. B, 2018, 27(4): 047302.
[9] Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays
Afshari-Bavil Mehdi, Xiao-Ping Lou, Ming-Li Dong, Chuan-Bo Li, Shuai Feng, Parsa Saviz, Lian-Qing Zhu. Chin. Phys. B, 2018, 27(12): 124204.
[10] Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit
Hua Lu, Yi-Cun Fan, Si-Qing Dai, Dong Mao, Fa-Jun Xiao, Peng Li, Jian-Lin Zhao. Chin. Phys. B, 2018, 27(11): 117302.
[11] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang, Wei Shao, Xiao-Kun Wei, Mu-Sheng Liang. Chin. Phys. B, 2018, 27(10): 100204.
[12] Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide
Li-li Tian, Jian-long Liu, Ke-ya Zhou, Yang Gao, Shu-tian Liu. Chin. Phys. B, 2017, 26(7): 078401.
[13] Thermal emission properties of one-dimensional grating with different parameters
Weixin Lin, Guozhou Li, Qiang Li, Hongjin Hu, Fang Han, Fanwei Zhang, Lijun Wu. Chin. Phys. B, 2017, 26(5): 057301.
[14] Plasmonically induced reflection in metal-insulator-metal waveguides with two silver baffles coupled square ring resonator
Zhi-Dong Zhang, Lian-Jun Ma, Fei Gao, Yan-Jun Zhang, Jun Tang, Hui-Liang Cao, Bin-Zhen Zhang, Ji-Cheng Wang, Shu-Bin Yan, Chen-Yang Xue. Chin. Phys. B, 2017, 26(12): 124212.
[15] Tunable coupling of a hybrid plasmonic waveguide consisting of two identical dielectric cylinders and a silver film
Benli Wang, Han Liang, Jiafang Li. Chin. Phys. B, 2017, 26(11): 114103.
No Suggested Reading articles found!