Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 103101    DOI: 10.1088/1674-1056/ac834f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Molecule opacity study on low-lying states of CS

Rui Li(李瑞)1,2, Jiqun Sang(桑纪群)1, Xiaohe Lin(林晓贺)3,2,†, Jianjun Li(李建军)1, Guiying Liang(梁桂颖)4, and Yong Wu(吴勇)2,5,‡
1. Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
2. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3. Faculty of Foundation, Space Engineering University, Beijing 101416, China;
4. School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China;
5. HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS is still lacking. In this work, the high-level MRCI+Q method is used to compute the potential energy curves, dipole moments and transition dipole moments of singlet and triplet states correlated with the lowest dissociation limit of CS, based on which high accurate vibration—rotation levels and spectroscopic constants of bound states are evaluated. The opacity of CS relevant to atmospheric circumstance is computed at a pressure of 100 atms for different temperatures. With the increase of temperature, band systems from different transitions mingle with each other, and band boundaries become blurred, which are originated from the increased population on vibrational excited states and electronic excited states at high temperature.
Keywords:  CS      transition dipole moment      opacity      excited state  
Received:  17 June 2022      Revised:  21 July 2022      Accepted manuscript online: 
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and 12203106), Fundamental Research Funds in Heilongjiang Province Universities, China (Grant No. 145109127), and the Scientific Research Plan Projects of Heilongjiang Education Department, China (Grant Nos. WNCGQJKF202103 and DWCGQKF202104).
Corresponding Authors:  Xiaohe Lin, Yong Wu     E-mail:  xiaohelin1989@163.com;wu yong@iapcm.ac.cn

Cite this article: 

Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇) Molecule opacity study on low-lying states of CS 2022 Chin. Phys. B 31 103101

[1] Paulose G, Barton E J, Yurchenko S N and Tennyson J 2015 Mon. Not. R. Astron. Soc. 454 1931
[2] Uehara H, Horiai K and Sakamoto Y 2015 J. Mol. Spectrosc. 313 19
[3] Li C L, Deng L H, Zhang J, Qiu X B, Wei J L and Chen Y Q 2013 J. Mol. Spectrosc. 284 29
[4] Sunanda K, Saksena M D, Deo M N, Fujiyama T and Kawaguchi K 2019 J. Mol. Spectrosc. 361 16
[5] Kawaguchi K and Deo M N 2019 J. Mol. Spectrosc. 362 96
[6] Zuo W L, Lv H, Liang H J, Shan S M, Ma R, Yan B and Xu H F 2018 Chin. Phys. B 27 063301
[7] Crawford F H and Shurcliff W A 1934 Phys. Rev. 45 860
[8] Mockler R C and Bird G R 1955 Phys. Rev. 98 1837
[9] Lovas F J and Krupenie PH 1974 J. Phys. Chem. Ref. Data 3 245
[10] Bogey M, Demuynck C and Destombes J L 1981 Chem. Phys. Lett. 81 256
[11] Bogey M, Demuynck C and Destombes J L 1982 J. Mol. Spectrosc. 95 35
[12] Kim E and Yamamoto S 2003 J. Mol. Spectrosc. 219 296
[13] Gottlieb C A, Myers P C and Thaddeus P 2003 Astrophys. 588 655
[14] Todd T R 1977 J. Mol. Spectrosc. 66 162
[15] Winkel R J Jr, Davis S P, Pecyner R and Brault J W 1984 Can. J. Phys. 62 1414
[16] Burkholder J B, Lovejoy E R, Hammer P D and Howard C J 1987 J. Mol. Spectrosc. 124 450
[17] Ram R S, Bernath P F and Davis S P 1995 J. Mol. Spectrosc. 173 146
[18] Bergeman T and Cossart D 1981 J. Mol. Spectrosc. 87 119
[19] Cossart D and Bergeman T 1976 J. Chem. Phys. 65 5462
[20] Mahon C A, Stampanoni A, Luque J and Crosley D R 1997 J. Mol. Spectrosc. 183 18
[21] Dornhöefer G, Hack W and Langel W 1984 J. Phys. Chem. 88 3060
[22] Robbe J M and Schamps J 1976 J. Chem. Phys. 65 5420
[23] Wilson S 1977 J. Chem. Phys. 67 4491
[24] Ornellas F R 1998 Chem. Phys. Lett. 296 25
[25] Hochlaf M, Chambaud G, Rosmus P, Andersen T and Werner H J 1999 J. Chem. Phys. 110 11835
[26] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Rev. Comput. Mol. Sci. 2 242
[27] Jong W A de, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[28] Dunning T H 1989 J. Chem. Phys. 90 1007
[29] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358
[30] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[31] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[32] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[33] Knowles P J and Werner H 1988 J Chem. Phys. Lett. 145 514
[34] Langhoff S R and Davidson E R 1974 Int. J Quantum Chem. 8 61
[35] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[36] Huber H P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand)
[37] Dulick M, Bauschlicher C W, Burrows A, Sharp C M, Ram R S and Bernath P 2003 Astrophys. J. 594 651
[38] Botschwina P and Sebald P 1985 J. Mol. Spectrosc. 110 1
[39] Coxon J A and Hajigeorgiou G 1992 Chem. Phys. 167 327
[40] Todd T R and Olson W B 1979 J. Mol. Spectrosc. 74 190
[41] Lee L C and Judge D L 1975 J. Chem. Phys. 63 2782
[42] Winnewisser G and Cook R L 1968 J. Mol. Spectrosc. 28 266
[43] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R and Wu Y 2019 Chin. Phys. B 28 053101
[44] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. B 29 023101
[45] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. Lett. 37 123101
[46] Zhao S T, Li J, Li R, Yin S and Guo H J 2021 Chin. Phys. Lett. 38 43101
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[6] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[7] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[8] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[9] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[10] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[11] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[12] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[13] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[14] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[15] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
No Suggested Reading articles found!