Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047203    DOI: 10.1088/1674-1056/ac4bd2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics

Ya-Nan Li(李亚男)1, Ping Wu(吴平)1,†, Shi-Ping Zhang(张师平)1, Yi-Li Pei(裴艺丽)1, Jin-Guang Yang(杨金光)1, Sen Chen(陈森)1, and Li Wang(王立)2
1 Beijing Key Laboratory for MagnetoPhotoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Increasing the phonon scattering center by adding nanoparticles to thermoelectric materials is an effective method of regulating the thermal conductivity. In this study, a series of Ca$_{3}$Co$_{4}$O$_{9}/x$ wt.% CNTs ($x=0$, 3, 5, 7, 10) polycrystalline ceramic thermoelectric materials by adding carbon nanotubes (CNTs) were prepared with sol-gel method and cold-pressing sintering technology. The results of x-ray diffraction and field emission scanning electron microscopy show that the materials have a single-phase structure with high orientation and sheet like microstructure. The effect of adding carbon nanotubes to the thermoelectric properties of Ca$_{3}$Co$_{4}$O$_{9}$ was systematically measured. The test results of thermoelectric properties show that the addition of carbon nanotubes reduces the electrical conductivity and Seebeck coefficient of the material. Nevertheless, the thermal conductivity of the samples with carbon nanotubes addition is lower than that of the samples without carbon nanotubes. At 625 K, the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$/10 wt.% CNTs sample is reduced to 0.408 W$\cdot$m$^{-1}\cdot$K$^{-1}$, which is about 73% lower than that of the original sample. When the three parameters are coupled, the figure of merit of Ca$_{3}$Co$_{4}$O$_{9}$/3 wt.% CNTs sample reaches 0.052, which is 29% higher than that of the original sample. This shows that an appropriate amount of carbon nanotubes addition can reduce the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$ ceramic samples and improve their thermoelectric properties.
Keywords:  Ca3Co4O9      carbon nanotubes      thermal conductivity      thermoelectric properties  
Received:  02 October 2021      Revised:  12 January 2022      Accepted manuscript online:  17 January 2022
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  74.25.fc (Electric and thermal conductivity)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 51836009).
Corresponding Authors:  Ping Wu     E-mail:  pingwu@sas.ustb.edu.cn

Cite this article: 

Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立) Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics 2022 Chin. Phys. B 31 047203

[1] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chem. Int. Edit. 48 8616
[2] Rowe D M 2006 Thermoelectrics Handbook:Macro to Nano (Taylor & Francis:CRC Press)
[3] Romanenko A I, Chebanova G E, Drozhzhin M V, Katamanin I N, Komarov V Y, Han M K, Kim S J, Chen T and Wang H C 2021 J. Am. Ceram. Soc. 104 6242
[4] Adam A M, Ibrahim E, Panbude A, Jayabal K and Diab A K 2021 J. Alloys Compd. 872 159630
[5] Ge Z H, Zhao L D, Di W, Liu X and He J 2016 Mater. Today 19 227
[6] Masset A C, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B and Hejtmanek J 2000 Phys. Rev. B 62 166
[7] Yin Y, Tudu B and Tiwari A 2017 Vacuum 146 356
[8] Madre M A, Urrutibeascoa I, Garcia G, Torres M A, Sotelo A and Diez J C 2019 J. Electron Mater. 48 1965
[9] Madre M A, Rasekh S, Torres M A, Diez J C and Sotelo A 2018 Adv. Appl. Ceram. 117 142
[10] Li Y N, Wu P, Zhang S P, Chen S, Yan D, Yang J G, Wang L and Huai X L 2018 Chin. Phys. B 27 057201
[11] Hira U, Han L, Norrman K, Christensen D V, Pryds N and Sher F 2018 Rsc. Adv. 8 12211
[12] Cha J S, Choi S M, Kim G H, Kim S J and Park K 2018 Ceram. Int. 44 6376
[13] Li Y N, Wu P, Zhang S P, Yang J G, Yan D and Huai X L 2020 J. Mater. Sci. Mater. Electron. 31 5353
[14] Butt S, Liu Y C, Lan J L, Shehzad K, Zhan B, Lin Y and Nan C W 2014 J. Alloys Compd. 588 277
[15] Sun Y and Song W 2006 J. Appl. Phys. 99 073906
[16] Madre M A, Rasekh Sh, Torres M A, Diez J C and Sotelo A 2018 Adv. Appl. Ceram. 117 142
[17] Wang X, Liu X C, Yan W, Hou S and Liu X 2019 J. Alloys Compd. 785 698
[18] Shi Z M, Gao F, Zhu J H, Xu J, Zhang Y, Gao T and Qin M J 2019 J. Materiomics 5 711
[19] Porokhin S, Shvanskaya L, Khovaylo V and Vasiliev A 2017 J. Alloys Compd. 695 2844
[20] Amaveda H, Mora M, Dura O J, Torres M A, Madre M A, Marinel S and Sotelo A 2021 J. Eur. Ceram. Soc. 41 402
[21] Kahraman F, Madre M A, Rasekh S, Salvador C, Bosque P, Torres M A, Diez J C and Sotelo A 2015 J. Eur. Ceram. Soc. 35 3835
[22] Yeo Y H and Oh T S 2014 Mater. Res. Bul. 58 54
[23] Kim S T, Park J M, Park K I, Chun S F, Lee H S, Choi P P and Yi S 2021 J. Mater. Sci. Technol. 94 175
[24] Tang G D, Yang W C, Wen J F, Wu Z C, Fan C and Wang Z H 2015 Ceram. Int. 41 961
[25] Schulz T and Töpfer J 2016 J. Alloys Compd. 659 122
[26] Barnard R D and Cannella V 1974 Phys. Today 27 52
[27] Miao T, Ma W, Xing Z, Wei J and Sun J 2013 Appl. Phys. Lett. 102 053105
[28] Lundstrom M 2000 Fundamentals of Carrier Transport, 2nd edn (Cambridge:Cambridge University Press) pp. 54-118
[29] Chen G 2005 Nanoscale energy transport and conversion:a parallel treatment of electrons, molecules, phonons, and photons (Oxford:Oxford University Press)
[30] Pang X M, Zhou J Q, Yang J X and Liao M H 2016 The Chinese Journal of Nonferrous Metals 26 1668
[31] Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G and Shim M 2003 Nat. Mater. 2 731
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[6] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[12] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[13] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[14] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[15] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
No Suggested Reading articles found!