Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047204    DOI: 10.1088/1674-1056/ac5609
Special Issue: TOPICAL REVIEW — Progress in thermoelectric materials and devices
TOPICAL REVIEW—Progress in thermoelectric materials and devices Prev   Next  

Micro thermoelectric devices: From principles to innovative applications

Qiulin Liu(刘求林)1,2, Guodong Li(李国栋)1,3,†, Hangtian Zhu(朱航天)1, and Huaizhou Zhao(赵怀周)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Thermoelectric devices (TEDs), including thermoelectric generators (TEGs) and thermoelectric coolers (TECs) based on the Seebeck and Peltier effects, respectively, are capable of converting heat directly into electricity and vice versa. Tough suffering from low energy conversion efficiency and relatively high capital cost, TEDs have found niche applications, such as the remote power source for spacecraft, solid-state refrigerators, waste heat recycling, and so on. In particular, on-chip integrable micro thermoelectric devices (μ-TEDs), which can realize local thermal management, on-site temperature sensing, and energy harvesting under minor temperature gradient, could play an important role in biological sensing and cell cultivation, self-powered Internet of Things (IoT), and wearable electronics. In this review, starting from the basic principles of thermoelectric devices, we summarize the most critical parameters for μ-TEDs, design guidelines, and most recent advances in the fabrication process. In addition, some innovative applications of μ-TEDs, such as in combination with microfluidics and photonics, are demonstrated in detail.
Keywords:  thermoelectric microdevices      contact impedance      local temperature control      energy harvesting  
Received:  19 December 2021      Revised:  10 February 2022      Accepted manuscript online:  17 February 2022
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.-a (Thin film structure and morphology)  
Fund: The authors acknowledge the funding support of the National Key Research and Development Program of China (Grant No. 2018YFA0702100) and the National Natural Science Foundation of China (Grant No. 52172259). We thank Jiawei Yang and Nan Chen for valuable discussions.
Corresponding Authors:  Guodong Li, Huaizhou Zhao     E-mail:;

Cite this article: 

Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周) Micro thermoelectric devices: From principles to innovative applications 2022 Chin. Phys. B 31 047204

[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Yue Z, Zhao K, Chen H, Qiu P, Chen L and Shi X 2021 Chin. Phys. Lett. 38 117201
[3] Altenkirch E 1911 Phys. Z. 12 920
[4] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[5] Wang H, Chen J, Lu T, Zhu K, Li S, Liu J and Zhao H 2018 Chin. Phys. B 27 47212
[6] Lu T, Zhang X, Zhang J, Ning P, Li Y and Niu P 2019 AIP Advances 9 095105
[7] Bryzek J 1996 Sensors and Actuators A:Physical 56 1
[8] Bhushan B 2005 Nanotribology and Nanomechanics:An Introduction, Bhushan B ed. (Berlin, Heidelberg:Springer Berlin Heidelberg) pp. 1031-1089
[9] Judy J W 2001 Smart Materials and Structures 10 1115
[10] Kim H S, Liu W and Ren Z 2017 Energy & Environmental Science 10 69
[11] Meng X, Fujisaka T, Ito K O and Suzuki R O 2014 Material Research Innovations 18 S4
[12] Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R and Venkatasubramanian R 2009 Nat. Nanotech. 4 235
[13] Sauciuc I, Chrysler G, Mahajan R and Szleper M 2003 Nineteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 11 April 2003, pp. 74-81
[14] Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Udalamatta Gamage G A G, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G and Ren Z 2018 Science 361 582
[15] Gao L, Liu Q, Yang J, Wu Y, Liu Z, Qin S, Ye X, Jin S, Li G, Zhao H and Long Y 2020 Chin. Phys. Lett. 37 066202
[16] Blauth S, Leithäuser C and Pinnau R 2020 ZAMM-Journal of Applied Mathematics and Mechanics 101 4
[17] Luo Z, Zeng L, Lau B, Lian Y and Heng C H 2018 IEEE Transactions on Circuits and Systems I:Regular Papers 65 1744
[18] Yu Y, Guo Z, Zhu W, Zhou J, Guo S, Wang Y and Deng Y 2022 Nano Energy 93 106818
[19] Manousiadis P P, Yoshida K, Turnbull G A and Samuel I D W 2020 Phil. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 378 20190186
[20] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z and Chen G 2011 Nat. Mater. 10 532
[21] Yin X, Yang R, Tan G and Fan S 2020 Science 370 786
[22] Khan S, Kim J, Roh K, Park G and Kim W 2021 Nano Energy 87 106180
[23] Leonov V and Vullers R J M 2009 Journal of Renewable and Sustainable Energy 1 062701
[24] Kishi M, Nemoto H, Hamao T, Yamamoto M, Sudou S, Mandai M and Yamamoto S 1999 Eighteenth International Conference on Thermoelectrics. Proceedings, 29 Aug.-2 Sept. 1999, pp. 301-307
[25] Li G, Garcia Fernandez J, Lara Ramos D A, Barati V, Pérez N, Soldatov I, Reith H, Schierning G and Nielsch K 2018 Nat. Electron. 1 555
[26] Wu Z, Zhang S, Liu Z, Mu E and Hu Z 2022 Nano Energy 91 106692
[27] Yan Q and Kanatzidis M G 2021 Nat. Mater. pp. 1-9
[28] Saini A, Kumar R and Kumar R 2021 Thermoelectricity and Advanced Thermoelectric Materials (Amsterdam:Elsevier)
[29] Funahashi R, Chen L, Guilmeau E, Li Q, Min G and Miyazaki Y 2021 Thermoelectric Energy Conversion (Amsterdam:Elsevier)
[30] Snyder G J and Snyder A H 2017 Energy & Environmental Science 10 2280
[31] Lee H 2010 Thermal Design:Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells (Hoboken:John Wiley & Sons, Inc.)
[32] Snyder G J 2009 Energy Harvesting Technologies (New York:Springer) Chapter 11, pp. 325-336
[33] Böttner H, Chen G and Venkatasubramanian R 2011 MRS Bulletin 31 211
[34] Ohshita Y, Ogura A, Hoshino A, Suzuki T, Hiiro S and Machida H 2002 Journal of Crystal Growth 235 365
[35] Dixit P and Miao J 2006 Journal of The Electrochemical Society 153 G552
[36] Krauss E, Kullock R, Wu X, Geisler P, Lundt N, Kamp M and Hecht B 2018 Crystal Growth & Design 18 1297
[37] Wu T, Lee H K and Myung N V 2016 Journal of The Electrochemical Society 163 D801
[38] Gao W, Muzyka K, Ma X, Lou B and Xu G 2018 Chem. Sci. 9 3911
[39] Nageswar S 1975 Electrodeposition and Surface Treatment (Elsevier BV) pp. 417-433
[40] Wen M, Blau S M, Spotte-Smith E W C, Dwaraknath S and Persson K A 2020 Chem. Sci. 12 1858
[41] Memming R 2015 Semiconductor Electrochemistry (Wiley-VCH Verlag GmbH & Co. KGaA)
[42] Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K H and Myung N V 2008 Electrochimica Acta 53 8103
[43] Glatz W, Schwyter E, Durrer L and Hierold C 2009 Journal of Microelectromechanical Systems 18 763
[44] Wu M, Binnemans K and Fransaer J 2014 Electrochimica Acta 147 451
[45] Trung N H, Van Toan N and Ono T 2017 Journal of Micromechanics and Microengineering 27 125006
[46] Jood P, Chetty R and Ohta M 2020 Journal of Materials Chemistry A 8 13024
[47] Jin M, Liang J, Qiu P, Huang H, Yue Z, Zhou L, Li R, Chen L and Shi X 2021 J. Phys. Chem. Lett. 12 8246
[48] Zhang X, Li J, Wang X, Chen Z, Mao J, Chen Y and Pei Y 2018 J. Am. Chem. Soc. 140 15883
[49] Yang J, Li G, Zhu H, Chen N, Lu T, Gao J, Guo L, Xiang J, Sun P, Yao Y, Yang R and Zhao H 2022 Joule 6 193
[50] Bu Z, Zhang X, Shan B, Tang J, Liu H, Chen Z, Lin S, Li W and Pei Y 2021 Sci. Adv. 7 eabf2738
[51] Schumacher C, Reinsberg K G, Rostek R, Akinsinde L, Baessler S, Zastrow S, Rampelberg G, Woias P, Detavernier C, Broekaert J A C, Bachmann J and Nielsch K 2013 Advanced Energy Materials 3 95
[52] Schumacher C, Reinsberg K G, Akinsinde L, Zastrow S, Heiderich S, Toellner W, Rampelberg G, Detavernier C, Broekaert J A C, Nielsch K and Bachmann J 2012 Advanced Energy Materials 2 345
[53] Becker E W, Ehrfeld W, Hagmann P, Maner A and Münchmeyer D 1986 Microelectronic Engineering 4 35
[54] Snyder G J, Lim J R, Huang C K and Fleurial J P 2003 Nat. Mater. 2 528
[55] Zhang W, Yang J and Xu D 2016 Journal of Microelectromechanical Systems 25 744
[56] Ngo T D, Kashani A, Imbalzano G, Nguyen K T Q and Hui D 2018 Composites Part B Engineering 143B 172
[57] Guo N and Leu M C 2013 Frontiers of Mechanical Engineering 8 215
[58] He M, Zhao Y, Wang B, Xi Q, Zhou J and Liang Z 2015 Small 11 5889
[59] Zhang S, Liu Y Q, Hao J N, Wallace G G, Beirne S and Chen J 2022 Advanced Functional Materials 32 2103092
[60] Qiu J, Yan Y, Luo T, Tang K, Yao L, Zhang J, Zhang M, Su X, Tan G, Xie H, Kanatzidis M G, Uher C and Tang X 2019 Energy & Environmental Science 12 3106
[61] Kim F, Kwon B, Eom Y, Lee J E, Park S, Jo S, Park S H, Kim B S, Im H J, Lee M H, Min T S, Kim K T, Chae H G, King W P and Son J S 2018 Nat. Energy 3 301
[62] Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh D J and Zhang Y 2019 Adv. Sci. 6 1901788
[63] Burton M R, Mehraban S, Beynon D, McGettrick J, Watson T, Lavery N P and Carnie M J 2019 Advanced Energy Materials 9 1900201
[64] Kim F, Yang S E, Ju H, Choo S, Lee J, Kim G, Jung S H, Kim S, Cha C, Kim K T, Ahn S, Chae H G and Son J S 2021 Nat. Electron. 4 579
[65] Tanusilp S A and Kurosaki K 2019 Materials 12 1943
[66] Steele M C and Rosi F D 1958 J. Appl. Phys. 29 1517
[67] Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I and Beers D S 1964 J. Appl. Phys. 35 2899
[68] Zhu G P, Zhao C W, Wang X W and Wang J 2021 Chin. Phys. Lett. 38 024401
[69] Strasser M, Aigner R, Lauterbach C, Sturm T F, Franosch M and Wachutka G 2004 Sensors and Actuators A:Physical 114 362
[70] Yu X, Wang Y, Liu Y, Li T, Zhou H, Gao X, Feng F, Roinila T and Wang Y 2012 Journal of Micromechanics and Microengineering 22 105011
[71] Hu G, Edwards H and Lee M 2019 Nat. Electron. 2 300
[72] Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J and Chen L D 2019 Energy & Environmental Science 12 2983
[73] Qu W, Plötner M and Fischer W J 2001 Journal of Micromechanics and Microengineering 11 146
[74] Goncalves L M, Couto C, Alpuim P and Correia J H 2008 Journal of Micromechanics and Microengineering 18 064008
[75] Kurosaki J, Yamamoto A, Tanaka S, Cannon J, Miyazaki K and Tsukamoto H 2009 Journal of Electronic Materials 38 1326
[76] Wang W, Jia F, Huang Q and Zhang J 2005 Microelectronic Engineering 77 223
[77] Bottner H, Nurnus J, Gavrikov A, Kuhner G, Jagle M, Kunzel C, Eberhard D, Plescher G, Schubert A and Schlereth K H 2004 Journal of Microelectromechanical Systems 13 414
[78] Bottner H 2005 24th International Conference on Thermoelectrics, 19-23 June 2005, pp. 1-8
[79] Bottner H, Nurnus J, Schubert A and Volkert F 2007 26th International Conference on Thermoelectrics, 3-7 June 2007, pp. 1-4
[80] Li J F, Tanaka S, Umeki T, Sugimoto S, Esashi M and Watanabe R 2003 Sensors and Actuators A:Physical 108 97
[81] Yu Y, ZhuW,Wang Y, Zhu P, Peng K and Deng Y 2020 Applied Energy 275 115404
[82] Qin D, Pan F, Zhou J, Xu Z and Deng Y 2021 Nano Energy 89 106472
[83] Tarancón A 2019 Nat. Electron. 2 270
[84] Mishu M K, Rokonuzzaman M, Pasupuleti J, Shakeri M, Rahman K S, Hamid F A, Tiong S K and Amin N 2020 Electronics 9 1345
[85] Wang Z L and Wu W 2012 Angew. Chem. Int. Ed. Engl. 51 11700
[86] Champier D 2017 Energy Conversion & Management 140 167
[87] Haras M and Skotnicki T 2018 Nano Energy 54 461
[88] Webb P 1992 Eur. J. Appl. Physiol. Occup. Physiol. 64 471
[89] Holmes A S, Hong G, Pullen K R and Buffard K R 2004 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 25-29 Jan. 2004, pp. 568-571
[90] Duangsuwan S, Leukachorn T, Chinsawatpan S and Promwong S 2009 IEEE 9th Malaysia International Conference on Communications, 15-17 Dec. 2009, pp. 686-690
[91] Lee H J, Sherrit S, Tosi L P, Walkemeyer P and Colonius T 2015 Sensors 15 26039
[92] Howey D A, Bansal A and Holmes A S 2011 Smart Materials and Structures 20 085021
[93] Sherrit S, Lee H J, Walkemeyer P, Winn T, Tosi L P and Colonius T 2015 SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 3 April 2015, pp. 943507-943519
[94] Suarez F, Nozariasbmarz A, Vashaee D and Öztürk M C 2016 Energy & Environmental Science 9 2099
[95] Monteith J L 1974 Heat Loss from Animals and Man (Amsterdam:Elsevier)
[96] Torfs T, Leonov V, Hoof C V and Gyselinckx B 2006 IEEE Conference on Sensors, 22-25 Oct. 2006, pp. 427-430
[97] Leonov V, Torfs T, Fiorini P and Hoof C V 2007 IEEE Sensors Journal 7 650
[98] Torfs T, Leonov V and Vullers R 2007 Sensors & Transducers J. 80 1230
[99] Yang Y, Hu H, Chen Z, Wang Z, Jiang L, Lu G, Li X, Chen R, Jin J, Kang H, Chen H, Lin S, Xiao S, Zhao H, Xiong R, Shi J, Zhou Q, Xu S and Chen Y 2020 Nano Lett. 20 4445
[100] Zhou Q, Zhu K, Li J, Li Q, Deng B, Zhang P, Wang Q, Guo C, Wang W and Liu W 2021 Adv. Sci. 8 2004947
[101] Lawrence M G 2005 Bulletin of the American Meteorological Society 86 225
[102] Liang D and Bowers J E 2010 Nat. Photonics 4 511
[103] Biberman A, Manipatruni S, Ophir N, Chen L, Lipson M and Bergman K 2010 Opt. Express 18 15544
[104] Assefa S, Green W M J, Rylyakov A, Schow C, Horst F and Vlasov Y A 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 6-10 March 2011, pp. 1-3
[105] Cunningham J E, Krishnamoorthy A V, Ho R, Shubin I, Thacker H, Lexau J, Lee D C, Feng D, Chow E, Luo Y, Zheng X, Li G, Yao J, Pinguet T, Raj K, Asghari M and Mitchell J G 2011 IEEE Journal of Selected Topics in Quantum Electronics 17 546
[106] Swillam M A, Zaki A O, Kirah K and Shahada L A 2019 Sci. Rep. 9 6669
[107] Nejadriahi H, Friedman A, Sharma R, Pappert S, Fainman Y and Yu P 2020 Opt. Express 28 24951
[108] Ribeiro A and Bogaerts W 2017 Opt. Express 25 29778
[109] Zhang C, Liang D, Kurczveil G, Bowers J E and Beausoleil R G 2015 IEEE Journal of Selected Topics in Quantum Electronics 21 385
[110] Sysak M N, Di L, Jones R, Kurczveil G, Piels M, Fiorentino M, Beausoleil R G and Bowers J E 2011 IEEE Journal of Selected Topics in Quantum Electronics 17 1490
[111] Enright R, Lei S, Cunningham G, Mathews I, Frizzell R and Shen A 2017 ECS Journal of Solid State Science and Technology 6 N3103
[112] Garcia J, Ramos D A L, Mohn M, Schlörb H, Rodriguez N P, Akinsinde L, Nielsch K, Schierning G and Reith H 2017 ECS Journal of Solid State Science and Technology 6 N3022
[113] Nemoto K, Kita T and Yamada H 2012 The 9th International Conference on Group IV Photonics (GFP), 29-31 Aug. 2012, pp. 216-218
[114] Komma J, Schwarz C, Hofmann G, Heinert D and Nawrodt R 2012 Appl. Phys. Lett. 101 041905
[115] Enright R, Shenghui L, Nolan K, Mathews I, Shen A, Levaufre G, Frizzell R, Guang-Hua D and Hernon D 2014 Bell Labs Technical Journal 19 31
[116] Balagadde F K, You L, Hansen C L, Arnold F H and Quake S R 2005 Science 309 137
[117] Whitesides G M 2006 Nature 442 368
[118] El-Ali J, Sorger P K and Jensen K F 2006 Nature 442 403
[119] Shi H, Nie K, Dong B, Long M, Xu H and Liu Z 2019 Chem. Eng. J. 361 635
[120] Javanmard M 2019 J. Allergy Clin. Immunol. 143 542
[121] Trieu N, Sune Z G A, Anders W and Dang D B 2018 Micromachines 9 403
[122] Kuhnemund M, Witters D, Nilsson M and Lammertyn J 2014 Lab Chip 14 2983
[123] Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y and Ingber D E 2010 Science 328 1662
[124] Hong B, Xue P, Wu Y, Bao J, Chuah Y J and Kang Y 2016 Biomed. Microdevices 18 21
[125] Sébastien C and Siari A 2019 Status of the Microfluidics Industry Market and Technology, Report
[126] Lei Z, Xie D, Mbogba M K, Chen Z, Tian C, Xu L and Zhao G 2019 Lab Chip 19 1929
[127] Begasse M L, Leaver M, Vazquez F, Grill S W and Hyman A A 2015 Cell Rep. 10 647
[128] Warocquier R and Scherrer K 1969 Eur. J. Biochem. 10 362
[129] Fang C, Ji F, Shu Z and Gao D 2017 Lab Chip 17 951
[130] Peng J, Fang C, Ren S, Pan J, Jia Y, Shu Z and Gao D 2019 International Journal of Heat and Mass Transfer 130 660
[131] Rosengarten G, Mutzenich S and Kalantar-zadeh K 2006 Experimental Thermal and Fluid Science 30 821
[132] Kopparthy V L, Tangutooru S M, Nestorova G G and Guilbeau E J 2012 Sensors and Actuators B:Chemical 166-167 608
[133] Nestorova G G, Adapa B S, Kopparthy V L and Guilbeau E J 2016 Sensors and Actuators B:Chemical 225 174
[134] Nestorova G G, Kopparthy V L, Crews N D and Guilbeau E J 2015 Analytical Methods 7 2055
[1] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[2] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[3] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊). Chin. Phys. B, 2019, 28(1): 017701.
[4] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[5] Optimal satisfaction degree in energy harvesting cognitive radio networks
Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉). Chin. Phys. B, 2015, 24(12): 128401.
[6] Broadband energy harvesting via magnetic coupling between two movable magnets
Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳). Chin. Phys. B, 2014, 23(8): 084501.
[7] Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
Wu Shao-Hua (吴少华), Du Li-Dong (杜利东), Kong De-Yi (孔德义), Ping Hao-Yue (平皓月), Fang Zhen (方震), Zhao Zhan (赵湛). Chin. Phys. B, 2014, 23(4): 044302.
No Suggested Reading articles found!