Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014215    DOI: 10.1088/1674-1056/ac3988
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Anti-$\mathcal{PT}$-symmetric Kerr gyroscope

Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  Non-Hermitian systems can exhibit unconventional spectral singularities called exceptional points (EPs). Various EP sensors have been fabricated in recent years, showing strong spectral responses to external signals. Here we propose how to achieve a nonlinear anti-parity-time ($\mathcal{APT}$) gyroscope by spinning an optical resonator. We show that, in the absence of any nonlinearity, the sensitivity or optical mode splitting of the linear device can be magnified up to 3 orders compared to that of the conventional device without EPs. Remarkably, the $\mathcal{APT}$ symmetry can be broken when including the Kerr nonlinearity of the materials and, as a result, the detection threshold can be significantly lowered, i.e., much weaker rotations which are well beyond the ability of a linear gyroscope can now be detected with the nonlinear device. Our work shows the powerful ability of $\mathcal{APT}$ gyroscopes in practice to achieve ultrasensitive rotation measurement.
Keywords:  anti-parity-time symmetry      optical gyroscope      exceptional point      Kerr nonlinearity  
Received:  09 September 2021      Revised:  10 October 2021      Accepted manuscript online:  15 November 2021
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.81.Pa (Sensors, gyros)  
  06.30.Gv (Velocity, acceleration, and rotation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935006, 11774086, and 12064010), Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4047), Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ20036), and Natural Science Foundation of Jiangxi Province of China (Grant No. 20192ACB21002).
Corresponding Authors:  Hui Jing     E-mail:

Cite this article: 

Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉) Anti-$\mathcal{PT}$-symmetric Kerr gyroscope 2022 Chin. Phys. B 31 014215

[1] Miri M A and Alù A 2019 Science 363 eaar7709
[2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[3] Zyablovsky A A, Vinogradov A P, Pukhov A A, Dorofeenko A V and Lisyansky A A 2014 Phys.-Usp. 57 1063
[4] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[5] Longhi S 2017 Europhys. Lett. 120 64001
[6] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[7] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[8] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[9] Ge L and Türeci H E 2013 Phys. Rev. A 88 053810
[10] Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139
[11] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604
[12] Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y x, Rotter S and Yang L 2018 Nat. Photon. 12 479
[13] Lu X Y, Jing H, Ma J Y and Wu Y ¨ 2015 Phys. Rev. Lett. 114 253601
[14] Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 117 110802
[15] Zhang X L, Wang S, Hou B and Chan C T 2018 Phys. Rev. X 8 021066
[16] Yoon J W, Choi Y, Hahn C, Kim G, Song S H, Yang K Y, Lee J Y, Kim Y, Lee C S, Shin J K, Lee H S and Berini P 2018 Nature 562 86
[17] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[18] Castaldi G, Savoia S, Galdi V, Alù A and Engheta N 2013 Phys. Rev. Lett. 110 173901
[19] Cao P C and Zhu X F 2021 Chin. Phys. B 30 030505
[20] Jiang Y, Mei Y, Zuo Y, Zhai Y, Li J, Wen J and Du S 2019 Phys. Rev. Lett. 123 193604
[21] Fan H, Chen J, Zhao Z, Wen J and Huang Y P 2020 ACS Photonics 7 3035
[22] Zhang X L, Jiang T and Chan C T 2019 Light Sci. Appl. 8 88
[23] Park S, Lee D, Park K, Shin H, Choi Y and Yoon J W 2021 Phys. Rev. Lett. 127 083601
[24] Zhao J, Liu Y, Wu L, Duan C K, Liu Y X and Du J 2020 Phys. Rev. Applied 13 014053
[25] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W and Hu C M 2020 Phys. Rev. Lett. 125 147202
[26] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170
[27] Xu G, Li Y, Li W, Fan S and Qiu C W 2021 Phys. Rev. Lett. 127 105901
[28] Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182
[29] Li Q, Zhang C J, Cheng Z D, Liu W Z, Wang J F, Yan F F, Lin Z H, Xiao Y, Sun K, Wang Y T, Tang J S, Xu J S, Li C F and Guo G C 2019 Optica 6 67
[30] Ding L, Shi K, Wang Y, Zhang Q, Zhu C, Zhang L, Yi J, Zhang S, Zhang X and Zhang W 2021 arXiv: 2107.12635[quant–ph]
[31] Bergman A, Duggan R, Sharma K, Tur M, Zadok A and Alù A 2021 Nat. Commun. 12 486
[32] Wen J, Qin G, Zheng C, Wei S, Kong X, Xin T and Long G 2020 npj Quantum Inf. 6 28
[33] Cao W, Lu X, Meng X, Sun J, Shen H and Xiao Y 2020 Phys. Rev. Lett. 124 030401
[34] Zhang F, Feng Y, Chen X, Ge L and Wan W 2020 Phys. Rev. Lett. 124 053901
[35] Stegmaier A, Imhof S, Helbig T, Hofmann T, Lee C H, Kremer M, Fritzsche A, Feichtner T, Klembt S, Höfling S, Boettcher I, Fulga I C, Ma L, Schmidt O G, Greiter M, Kiessling T, Szameit A and Thomale R 2021 Phys. Rev. Lett. 126 215302
[36] Wang F, Niu X, Hu X, Gu T, Wang X, Yang J, Yang H, Ao Y, Wang S and Gong Q 2020 Phys. Rev. Applied 14 044050
[37] Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845
[38] Dai Y, Wen Z, Ji K, Liu Z, Wang H, Zhang Z, Gao Y, Lu B, Wang Y, Qi X and Bai J 2020 Opt. Lett. 45 3099
[39] Lu B, Liu X F, Gao Y P, Cao C, Wang T J and Wang C 2019 Opt. Express 27 22237
[40] Zhang H, Huang R, Zhang S D, Li Y, Qiu C W, Nori F and Jing H 2020 Nano Lett. 20 7594
[41] Xu H S and Jin L 2021 Phys. Rev. A 104 012218
[42] Zheng C 2019 Europhys. Lett. 126 30005
[43] Wang C, Yang M L, Guo C X, Zhao X M and Kou S P 2019 Europhys. Lett. 128 41001
[44] Qi H, Hu X, Wang X and Gong Q 2021 Phys. Rev. A 103 063520
[45] Nair J M P, Mukhopadhyay D and Agarwal G S 2021 Phys. Rev. Lett. 126 180401
[46] Li H, Mekawy A and Alù A 2021 Phys. Rev. Lett. 127 014301
[47] Cao P, Li Y, Peng Y, Qiu C and Zhu X 2020 ES Energy Environ. 7 48
[48] Carlo M D, Leonardis F D, Lamberti L and Passaro V M N 2019 Opt. Lett. 44 3956
[49] Abbas M, Khurshid A, Hussain I and Ziauddin 2020 Opt. Express 28 8003
[50] Peng Z H, Jia C X, Zhang Y Q, Yuan J B and Kuang L M 2020 Phys. Rev. A 102 043527
[51] Shui T, Yang W X, Li L and Wang X 2019 Opt. Lett. 44 2089
[52] Roy A, Jahani S, Guo Q, Dutt A, Fan S, Miri M A and Marandi A 2021 Optica 8 415
[53] Wu J H, Artoni M and La Rocca G C 2014 Phys. Rev. Lett. 113 123004
[54] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
[55] Wang X and Wu J H 2016 Opt. Express 24 4289
[56] Ryu J W, Son W S and Hwang D U 2019 Phys. Rev. E 100 022209
[57] Wu J H, Artoni M and La Rocca G C 2015 Phys. Rev. A 91 033811
[58] Antonosyan D A, Solntsev A S and Sukhorukov A A 2015 Opt. Lett. 40 4575
[59] Chen P and Chong Y D 2017 Phys. Rev. A 95 062113
[60] Longhi S 2018 Opt. Lett. 43 4025
[61] Zhao X, Xing Y, Qi L, Liu S, Zhang S and Wang H F 2021 New J. Phys. 23 073043
[62] Jin L 2018 Phys. Rev. A 98 022117
[63] Duan Y, Zhang X, Ding Y and Ni X 2021 Photonics Res. 9 1280
[64] Chen B, Guo Y and Shen H 2020 Opt. Express 28 28762
[65] Ke S, Zhao D, Liu J, Liu Q, Liao Q, Wang B and Lu P 2019 Opt. Express 27 13858
[66] Wu H C, Jin L and Song Z 2021 Phys. Rev. B 103 235110
[67] Jahromi H R, Nori F and Franco R L 2021 arXiv: 2101.04663[quant– ph]
[68] Qin Y, Chen H, Luo D, Pan C, Hu H, Zhang Y and Wei D 2021 Opt. Express 29 29175
[69] Xu J F, Yang X B, Chen H H and Lin Z H 2020 Chin. Phys. B 29 064201
[70] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[71] Wiersig J 2020 Photonics Res. 8 1457
[72] Li J, Suh M G and Vahala K 2017 Optica 4 346
[73] Li R, Fan W, Jiang L, Duan L, Quan W and Fang J 2016 Phys. Rev. A 94 032109
[74] Li K, Davuluri S and Li Y 2018 Sci. China-Phys. Mech. Astron. 61 090311
[75] Ren J, Hodaei H, Harari G, Hassan A U, Chow W, Soltani M, Christodoulides D and Khajavikhan M 2017 Opt. Lett. 42 1556
[76] Smith D D, Chang H, Horstman L and Diels J C 2019 Opt. Express 27 34169
[77] Grant M J and Digonnet M J F 2020 Opt. Lett. 45 6538
[78] Mao X, Qin G Q, Yang H, Zhang H, Wang M and Long G L 2020 New J. Phys. 22 093009
[79] Sunada S 2017 Phys. Rev. A 96 033842
[80] Grant M J and Digonnet M J F 2021 Opt. Lett. 46 2936
[81] Lai Y H, Suh M G, Lu Y K, Shen B, Yang Q F, Wang H, Li J, Lee S H, Yang K Y and Vahala K 2020 Nat. Photon. 14 345
[82] Wang H, Lai Y H, Yuan Z, Suh M G and Vahala K 2020 Nat. Commun. 11 1610
[83] Horstman L, Hsu N, Hendrie J, Smith D and Diels J C 2020 Photonics Res. 8 252
[84] Lai Y H, Lu Y K, Suh M G, Yuan Z and Vahala K 2019 Nature 576 65
[85] Hokmabadi M P, Schumer A, Christodoulides D N and Khajavikhan M 2019 Nature 576 70
[86] Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N and Carmon T 2018 Nature 558 569
[87] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[88] Li B, Huang R, Xu X, Miranowicz A and Jing H 2019 Photonics Res. 7 630
[89] Jing H, Lu H, Özdemir S K, Carmon T and Nori F 2018 Optica 5 1424
[90] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605
[91] Lu H, Jiang Y, Wang Y Z and Jing H 2017 Photonics Res. 5 367
[92] Li B, Özdemir Ş K, Xu X W, Zhang L, Kuang L M and Jing H 2021 Phys. Rev. A 103 053522
[93] Xu Y, Liu J Y, Liu W and Xiao Y F 2021 Phys. Rev. A 103 053501
[94] Jiang Y, Maayani S, Carmon T, Nori F and Jing H 2018 Phys. Rev. Applied 10 064037
[95] Li W A, Huang G Y, Chen J P and Chen Y 2020 Phys. Rev. A 102 033526
[96] Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q and Xiao Y F 2017 Phys. Rev. Lett. 118 033901
[97] Del Bino L, Silver J M, Stebbings S L and Del’Haye P 2017 Sci. Rep. 7 43142
[98] Cao Q T, Liu R, Wang H, Lu Y K, Qiu C W, Rotter S, Gong Q and Xiao Y F 2020 Nat. Commun. 11 1136
[99] Lumer Y, Plotnik Y, Rechtsman M C and Segev M 2013 Phys. Rev. Lett. 111 263901
[100] Huet V, Rasoloniaina A, Guillemé P, Rochard P, Féron P, Mortier M, Levenson A, Bencheikh K, Yacomotti A and Dumeige Y 2016 Phys. Rev. Lett. 116 133902
[101] Shen Z, Dong C H, Chen Y, Xiao Y F, Sun F W and Guo G C 2016 Opt. Lett. 41 1249
[102] Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357
[103] Malykin G B 2000 Phys.-Usp. 43 1229
[104] Li T, Gao Z and Xia K 2021 Opt. Express 29 17613
[105] Ramezanpour S and Bogdanov A 2021 Phys. Rev. A 103 043510
[106] Guo X, Zou C L, Jung H and Tang H X 2016 Phys. Rev. Lett. 117 123902
[107] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[108] Thompson J D, Tiecke T G, de Leon N P, Feist J, Akimov A V, Gullans M, Zibrov A S, Vuletić V and Lukin M D 2013 Science 340 1202
[109] Silver J M, Bino L D, Woodley M T M, Ghalanos G N, Svela A Ø, Moroney N, Zhang S, Grattan K T V and Del’Haye P 2021 Optica 8 1219
[1] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[2] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[3] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[4] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[5] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[6] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[7] Fabry-Pérot resonance coupling associated exceptional points in a composite grating structure
Zhi-Sen Jiang(蒋之森), De-Jiao Hu(胡德娇), Lin Pang(庞霖), Fu-Hua Gao(高福华), Ping Wang(王平). Chin. Phys. B, 2018, 27(5): 054201.
[8] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[9] Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application
Jing Jin(金靖), Ya Li(李亚), Zu-Chen Zhang(张祖琛), Chun-Xiao Wu(吴春晓), Ning-Fang Song(宋凝芳). Chin. Phys. B, 2016, 25(8): 084213.
[10] Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour. Chin. Phys. B, 2016, 25(7): 074204.
[11] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[12] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[13] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
[14] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[15] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
No Suggested Reading articles found!