Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014216    DOI: 10.1088/1674-1056/ac0e28
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities

Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚)
School of Physics, Guizhou University, Guiyang 550025, China
Abstract  Resonance cavity is a basic element in optics, which has wide applications in optical devices. Coupled cavities (CCs) designed in metal-insulator-metal (MIM) bus waveguide are investigated through the finite difference time domain method and coupled-mode theory. In the CCs, the resonant modes of the surface plasmon polaritons (SPPs) split with the thickness decreasing of the middle baffle. Through the coupled-mode theory analysis, it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting. The resonant wavelength of positive coupling mode can be tuned in a large range (about 644 nm) through adjusting the coupling strength, which is quite different from the classical adjustment of the optical path in a single cavity. Based on the resonances of the CCs in the MIM waveguide, more compact devices can be designed to manipulate SPPs propagation. A device is designed to realize flexible multiple-wavelength SPPs routing. The coupling in CC structures can be applied to the design of easy-integrated laser cavities, filters, multiple-wavelength management devices in SPPs circuits, nanosensors, etc.
Keywords:  surface plasmon polaritons      coupled resonators      multiplexing  
Received:  06 April 2021      Revised:  15 June 2021      Accepted manuscript online:  24 June 2021
PACS:  42.82.-m (Integrated optics)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11764006).
Corresponding Authors:  Yue-Gang Chen     E-mail:  yg_chenyg@sina.com

Cite this article: 

Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚) Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities 2022 Chin. Phys. B 31 014216

[1] Alu A and Engheta N 2009 Phys. Rev. Lett. 103 143902
[2] Huang J S, Feichtner T, Biagioni P and Hecht B 2009 Nano Lett. 9 1897
[3] Veronis G and Fan S 2005 Opt. Lett. 30 3359
[4] Bozhevolnyi S I, Volkov V S, Devaux E and Ebbesen T W 2005 Phys. Rev. Lett. 95 046802
[5] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[6] Wei H, Wang Z X, Tian X R, Käll M and Xu H X 2011 Nat. Commun. 2 387
[7] Tanemura T, Balram K C, Ly-Gagnon D S, Wahl P, White J S, Brongersma M L and Miller D A B 2011 Nano Lett. 11 2693
[8] Verhagen E, Dionne J A, Kuipers L, Atwater H A and Polman A 2008 Nano Lett. 8 2925
[9] Born M and Wolf E 1959 Principles of Optics (England: Cambridge University Press)
[10] Stefanou N and Modinos A 1998 Phys. Rev. B 57 12127
[11] Underwood D L, Shanks W E, Koch J and Houck A A 2012 Phys. Rev. A 86 023837
[12] Feng S and Wang Y 2011 Chin. Phys. B 20 054209
[13] Maier S A 2006 Opt. Quant. Electron 38 257
[14] Hill M T, Oei Y S, Smalbrugge B, Zhu Y and Smit M K 2007 Nat. Photon. 1 589
[15] Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M and Park H G 2010 Nano Lett. 10 3679
[16] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[17] Chen Z, Song X K, Jiao R Z, Duan G Y, Wang L L and Yu L 2015 IEEE Photonics Journal 7 2492550
[18] Neo Y, Matsumoto T, Watanabe T, Tomita M and Mimura H 2016 Opt. Express 24 26201
[19] Lai G, Liang R, Zhang Y, Bian Z, Yi L, Zhan G and Zhao R 2015 Opt. Express 23 6554
[20] Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T and Yu H Q 2020 Chin. Phys. B 29 084211
[21] Wu X J, Dou C, Xu W, Zhang G B, Tian R L and Liu H L 2019 Chin. Phys. B 28 014204
[22] Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J and Nordlander P 2008 Nano. Lett. 8 3983
[23] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[24] Chen C, Hu R, Cui L, Yu L, Wang L and Xiao J 2014 Opt. Commun. 320 6
[25] Wang B and Wang G P 2004 Opt. Lett. 29 1992
[26] Li B X, Li H J, Zeng L L, Zhan S P, He H Z, Chen Z Q and Xu H 2016 J. Lightwave Technology 34 3342
[27] Qiao L, Zhang G, Wang Z, Fan G and Yan Y 2019 Opt. Commun. 433 144
[28] Lin G Q, Yang H, Deng Y, Wu D, Zhou X, Wu Y, Cao G, Chen J, Sun W and Zhou R 2019 Opt. Express 27 33359
[29] Lu H, Liu X and Mao D 2012 Phys. Rev. A 85 1
[30] Wang H Q, Yang J, Zhang J J, Huang J, Wu W J, Chen D G and Xiao G G 2016 Opt. Lett. 41 1233
[31] Yang J H, Song X K, Yang S, Cui L and YU L 2017 J. Phys. D: Appl. Phys. 50 325107
[32] Gai H F, Wang J and Tian Q 2007 Appl. Opt. 46 2229
[33] Qi Y P, Wang L Y, Zhang Y, Zhang T, Zhang B H, Deng X Y and Wang X X 2020 Chin. Phys. B 29 067303
[34] Yariv A 2000 Electron. Lett. 36 321
[1] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[2] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[3] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[6] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[7] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[8] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[9] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[12] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[13] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[14] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!