Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014214    DOI: 10.1088/1674-1056/ac0523
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lattice plasmon mode excitation via near-field coupling

Yun Lin(林蕴)1,2, Shuo Shen(申烁)1, Xiang Gao(高祥)1, and Liancheng Wang(汪炼成)1,†
1 State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;
2 Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410000, China
Abstract  The optical response of metal nanoparticles can be modified through near-field or far-field interaction, yet the lattice plasmon modes (LPMs) considered can only be excited from the latter. Here instead, we present a theoretical evaluation for LPM excitation via the near-field coupling process. The sample is an arrayed structure with specific units composed of upper metal disks, a lower metal hole and a sandwiched dielectric post. The excitation process and underlying mechanism of the LPM and the influence of the structure parameters on the optical properties have been investigated in detail by using a finite-difference time-domain (FDTD) numerical method. Our investigation presented here should advance the understanding of near-field interaction of plasmon modes for LPM excitation, and LPMs could find some potential applications, such as in near-field optical microscopes, biosensors, optical filters and plasmonic lasers.
Keywords:  optical response of metal nanoparticles      lattice plasmon modes      finite-difference time-domain  
Received:  12 March 2021      Revised:  22 May 2021      Accepted manuscript online:  26 May 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.30.Lr (Modulation and optical transfer functions)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, China, the National Key Research and Development Program of China (Grant No. 2018YFB0406702), Professorship Startup Funding (Grant No. 217056), Innovation-Driven Project of Central South University (Grant No. 2018CX001), Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT201801).
Corresponding Authors:  Liancheng Wang     E-mail:  liancheng_wang@csu.edu.cn

Cite this article: 

Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成) Lattice plasmon mode excitation via near-field coupling 2022 Chin. Phys. B 31 014214

[1] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[2] Jensen T R, Malinsky M D, Haynes C L and Van Duyne R P 2000 J. Phys. Chem. B 104 10549
[3] Zhao J, Zhang X, Yonzon C R, Haes A J and Van Duyne R P 2006 Nanomedicine 1 219
[4] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[5] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L and Zhang X 2009 Nature 461 629
[6] Wang L, Ng R J H, Safari Dinachali S, Jalali M, Yu Y and Yang J K 2016 ACS Photon. 3 627
[7] Yokogawa S, Burgos S P and Atwater H A 2012 Nano Lett. 12 4349
[8] Pelton M, Aizpurua J and Bryant G 2008 Laser Photon. Rev. 2 136
[9] Wang L, Liu Z, Yi X, Zhang Y, Li H, Li J and Wang G 2016 J. Appl. Phys. 119 173106
[10] Vakevainen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H and Törmä P 2014 Nano Lett. 14 1721
[11] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[12] Auguiè B and Barnes W L 2008 Phys. Rev. Lett. 101 143902
[13] Kravets V G, Schedin F and Grigorenko A N 2008 Phys. Rev. Lett. 101 087403
[14] Nikitin A G 2014 Appl. Phys. Lett. 104 061107
[15] Nikitin A G, Nguyen T and Dallaporta H 2013 Appl. Phys. Lett. 102 221116
[16] Nikitin A G, Kabashin A V and Dallaporta H 2012 Opt. Express 20 27941
[17] Humphrey A D, Meinzer N, Starkey T A and Barnes W L 2016 ACS Photon. 3 634
[18] Zhou W, Dridi M, Suh J Y, Kim C H, Co T D, Wasielewski M R and Odom T W 2013 Nat. Nanotech. 8 506
[19] Gao H, Zhou W and Odom T W 2010 Adv. Funct. Mater. 20 529
[20] Zhou W, Hua Y, Huntington M D and Odom T W 2012 J. Phys. Chem. Lett. 3 1381
[21] Zhou W and Odom T W 2011 Nat. Nanotech. 7 423
[22] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[23] Mock J J, Barbic M, Smith D R, Schultz D A and Schultz S J 2002 Chem. Phys. 116 6755
[24] Auguiè B and Barnes W L 2009 Opt. Lett. 34 401
[25] Humphrey A D and Barnes W L 2014 Phys. Rev. B 90 075404
[26] Christ A, Martin Q J, Ekinci Y, GippiusN A and Tikhodeev S G 2008 Nano Lett. 8 2171
[27] Li W D, Hu J and Chou S Y 2011 Opt. Express 19 21098
[28] Li W D, Ding F, Hu J and Chou S Y 2011 Opt. Express 19 3925
[29] Chen Q and Cumming D R 2010 Opt. Express 18 14056
[30] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[31] Thackray B D, Kravets V G, Schedin F, Auton G, Thomas P A and Grigorenko A N 2014 ACS Photon. 1 1116
[32] Vecchi G, Giannini V and Gómez Rivas J 2009 Phys. Rev. Lett. 102 146807
[33] Lozano G, Louwers D J, Rodríguez S R K, Murai S, Jansen O T A, Verschuuren M A and Gómez Rivas 2013 Light: Sci. Appl. 2 e66
[34] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[35] Lukýanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[1] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[2] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[3] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[4] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[5] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[6] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[7] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[8] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
[9] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[10] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[11] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
Wang Yue (王玥), Wang Jian-Guo (王建国), Chen Zai-Gao (陈再高). Chin. Phys. B, 2015, 24(2): 024101.
[12] Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures
Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(4): 047306.
[13] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信). Chin. Phys. B, 2014, 23(12): 124102.
[14] Ultra-elongated depth of focus of plasmonic lenses with concentric elliptical slits under Gaussian beam illumination
Wang Jing (王婧), Fu Yong-Qi (付永启). Chin. Phys. B, 2013, 22(9): 090206.
[15] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai (章春来), Yuan Xiao-Dong (袁晓东), Xiang Xia (向霞), Wang Zhi-Guo (王治国), Liu Chun-Ming (刘春明), Li Li (李莉), He Shao-Bo (贺少勃), Zu Xiao-Tao (祖小涛). Chin. Phys. B, 2012, 21(9): 094213.
No Suggested Reading articles found!