Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127901    DOI: 10.1088/1674-1056/ac2b92
RAPID COMMUNICATION Prev   Next  

Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4

Yunlong Li(李云龙)1, Chaozhi Huang(黄超之)1, Guohua Wang(王国华)1, Jiayuan Hu(胡佳元)1, Shaofeng Duan(段绍峰)1, Chenhang Xu(徐晨航)1, Qi Lu(卢琦)1, Qiang Jing(景强)1, Wentao Zhang(张文涛)1,†, and Dong Qian(钱冬)1,2,‡
1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.
Keywords:  angle-resolved photoemission spectroscopy      band structure      topological insulator      ternary compounds  
Received:  04 July 2021      Revised:  04 September 2021      Accepted manuscript online:  30 September 2021
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11521404, 12074248, 11974243, and 11804194). D. Q. and W. T. Z. acknowledge additional support from a Shanghai talent program.
Corresponding Authors:  Wentao Zhang, Dong Qian     E-mail:  wentaozhang@sjtu.edu.cn;dqian@sjtu.edu.cn

Cite this article: 

Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬) Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 2021 Chin. Phys. B 30 127901

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Thouless D J, Kohmoto M, Nightingale M P and Nijs M den 1982 Phys. Rev. Lett. 49 405
[4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[5] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. Lett. 93 156804
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[7] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[8] Qi X L and Zhang S C 2010 Phys. Today 63 33
[9] Yang Z Q, Jia J F and Qian D 2016 Chin. Phys. B 25 117312
[10] Liu C and Liu X R 2019 Acta Phys. Sin. 68 227901 (in Chinese)
[11] Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G and Qi Y 2020 Chin. Phys. Lett. 37 066401
[12] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304
[13] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[14] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[15] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[16] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[17] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[18] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[19] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W, Li Q, Gilbert M J, Chou F, Samarth N and Hasan M Z 2014 Nat. Phys. 10 943
[20] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[21] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[22] Shi H B, Yan L Q, Su Y T, Wang L, Cao X Y, Bi L Z, Meng Y, Sun Y and Zhao H W 2020 Chin. Phys. B 29 117302
[23] Zhang T Y, Yan Q and Sun Q F 2021 Chin. Phys. Lett. 38 077303
[24] Eremeev S V, Landolt G, Menshchikova T V, Slomski B, Koroteev Y M, Aliev Z S, Babanly M B, Henk J, Ernst A, Patthey L, Eich A, Khajetoorians A A, Hagemeister J, Pietzsch O, Wiebe J, Wiesendanger R, Echenique P M, Tsirkin S S, Amiraslanov I R, Dil J H and Chulkov E V 2012 Nat. Commun. 3 635
[25] Menshchikova T V, Eremeev S V and Chulkov E V 2013 Appl. Surf. Sci. 267 1
[26] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[27] Autès G, Isaeva A, Moreschini L, Johannsen J C, Pisoni A, Mori R, Zhang W T, Filatova T G, Kuznetsov A N, Forró L, Van den Broek W, Kim Y, Kim K S, Lanzara A, Denlinger J D, Rotenberg E, Bostwick A, Grioni M and Yazyev O V 2016 Nat. Mater. 15 154
[28] Neupane M, Xu S Y, Wray L A, Petersen A, Shankar R, Alidoust N, Liu C, Fedorov A, Ji H, Allred J M, Hor Y S, Chang T R, Jeng H T, Lin H, Bansil A, Cava R J and Hasan M Z 2012 Phys. Rev. B 85 235406
[29] Sterzi A, Manzoni G, Crepaldi A, Cilento F, Zacchigna M, Leclerc M, Bugnon Ph, Magrez A, Berger H, Petaccia L and Parmigiani F 2018 J. Electron. Spectrosc. Relat. Phenom. 225 23
[30] Kuznetsova L A, Kuznetsov V L and Rowe D M 2000 J. Phys. Chem. Solids 61 1269
[31] Pérez Vicente C, Tirado J L, Adouby K, Jumas J C, Touré A A and Kra G 1999 Inorg. Chem. 38 2131
[32] Heinke F, Urban P, Werwein A, Fraunhofer C, Rosenthal T, Schwarzmüller S, Souchay D, Fahrnbauer F, Dyadkin V, Wagner G and Oeckler O 2018 Inorg. Chem. 57 4427
[33] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[34] Yang Y, Tang T, Duan S, Zhou C, Hao D and Zhang W 2019 Rev. Sci. Instrum. 90 063905
[35] Tang T, Wang H, Duan S, Yang Y, Huang C, Guo Y, Qian D and Zhang W 2020 Phys. Rev. B 101 235148
[36] Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z X 2012 Phys. Rev. Lett. 108 117403
[37] Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P and Shen Z X 2013 Phys. Rev. Lett. 111 136802
[38] Ito H, Otaki Y, Tomohiro Y, Ishida Y, Akiyama R, Kimura A, Shin S and Kuroda S 2020 Phys. Rev. Res. 2 043120
[39] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712
[40] Park S R, Han J, Kim C, Koh Y Y, Kim C, Lee H, Choi H J, Han J H, Lee K D, Hur N J, Arita M, Shimada K, Namatame H and Taniguchi M 2012 Phys. Rev. Lett. 108 046805
[41] Wang Y and Gedik N 2013 Phys. Status Solidi RRL 7 64
[42] Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, JarilloHerrero P and Gedik N 2012 Phys. Rev. Lett. 109 127401
[43] Vidal F, Eddrief M, Rache Salles B, Vobornik I, Velez-Fort E, Panaccione G and Marangolo M 2013 Phys. Rev. B 88 241410
[44] Kondo T, Nakashima Y, Ishida Y, Kikkawa A, Taguchi Y, Tokura Y and Shin S 2017 Phys. Rev. B 96 241413
[1] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[2] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[3] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[4] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[7] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[8] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[9] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[10] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[11] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[12] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[13] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[14] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[15] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
No Suggested Reading articles found!