Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027506    DOI: 10.1088/1674-1056/ac2b22
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers

Lin-Ao Huang(黄林傲)1, Mei-Yu Wang(王梅雨)2, Peng Wang(王鹏)2,5, Yuan Yuan(袁源)1, Ruo-Bai Liu(刘若柏)1, Tian-Yu Liu(刘天宇)1, Yu Lu(卢羽)1, Jia-Rui Chen(陈家瑞)1, Lu-Jun Wei(魏陆军)3, Wei Zhang(张维)1, Biao You(游彪)1,5, Qing-Yu Xu(徐庆宇)4,†, and Jun Du(杜军)1,5,‡
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
4 School of Physics, Southeast University, Nanjing 211189, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  The realization of perpendicular magnetization and perpendicular exchange bias (PEB) in magnetic multilayers is important for the spintronic applications. NiO(t)/[Ni(4 nm)/Pt(1 nm)]2 multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO3 (001) substrates. Perpendicular magnetization can be achieved when t < 25 nm. Perpendicular magnetization originates from strong perpendicular magnetic anisotropy (PMA), mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers. The PMA energy constant decreases monotonically with increasing t, due to the weakening of Ni (001) orientation and a little degradation of the Ni-Pt interface. Furthermore, significant PEB can be observed though NiO layer has spin compensated (001) crystalline plane. The PEB field increases monotonically with increasing t, which is considered to result from the thickness dependent anisotropy of the NiO layer.
Keywords:  perpendicular magnetic anisotropy      perpendicular exchange bias      epitaxial growth      random field model  
Received:  24 August 2021      Revised:  24 September 2021      Accepted manuscript online:  29 September 2021
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Et (Exchange and superexchange interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51971109, 51771053, 52001169, and 11874199), the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the Fundamental Research Funds for the Central University, China (Grant No. 2242020k30039), and the open research fund of Key Laboratory of MEMS of Ministry of Education, Southeast University.
Corresponding Authors:  Qing-Yu Xu, Jun Du     E-mail:  xuqingyu@seu.edu.cn;jdu@nju.edu.cn

Cite this article: 

Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军) Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers 2022 Chin. Phys. B 31 027506

[1] Nakayama M, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S and Yoda H 2008 J. Appl. Phys. 103 07A710
[2] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[3] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 J. Appl. Phys. 91 5246
[4] Parkin S and Yang S H 2015 Nat. Nanotechnol. 10 195
[5] Zhou W N, Seki T, Arai H, Imamura H and Takanashi K 2016 Phys. Rev. B 94 220401(R)
[6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[7] Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
[8] Cubukcu M, Boulle O, Drouard M, Garello K, Avci C O, Miron I M, Langer J, Ocker B, Gambardella P and Gaudin G 2014 Appl. Phys. Lett. 104 042406
[9] Zeper W B, Greidanus F J A M, Carcia P F and Fincher C R 1989 J. Appl. Phys. 65 4971
[10] Nakajima N, Koide T, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nyvlt M and Suzuki Y 1998 Phys. Rev. Lett. 81 5229
[11] Carcia P F, Meinhaldt A D and Suna A 1985 Appl. Phys. Lett. 47 178
[12] Carcia P F 1988 J. Appl. Phys. 63 5066
[13] Liu Y, Zhu K G, Zhong H C, Zhu Z Y, Yu T and Ma S D 2016 Chin. Phys. B 25 117805
[14] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411
[15] Jungblut R, Johnson M T, Stegge J aan de, Reinders A and Broeder F J A den 1994 J. Appl. Phys. 75 6424
[16] Bochi G, Ballentine C A, Inglefield H E, Thompson C V and O'Handley R C 1996 Phys. Rev. B 53 R1729(R)
[17] Seki T, Tsujikawa M, Ito K, Uchida K, Kurebayashi H, Shirai M and Takanashi K 2020 Phys. Rev. Mater. 4 064413
[18] Seki T, Sakuraba Y, Masuda K, Miura A, Tsujikawa M, Uchida K, Kubota T, Miura Y, Shirai M and Takanashi K 2021 Phys. Rev. B 103 L020402
[19] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[20] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[21] Shiratsuchi Y, Noutomi H, Oikawa H, Nakamura T, Suzuki M, Fujita T, Arakawa K, Takechi Y, Mori H, Kinoshita T, Yamamoto M and Nakatani R 2012 Phys. Rev. Lett. 109 077202
[22] Lin L, Thiyagarajah N, Joo H W, Heo J, Lee K A and Bae S 2010 Appl. Phys. Lett. 97 242514
[23] Sort J, Baltz V, Garcia F, Rodmacq B and Dieny B 2005 Phys. Rev. B 71 054411
[24] Liu Y F, Cai J W and He S L 2009 J. Phys. D:Appl. Phys. 42 115002
[25] Barton P T, Premchand Y D, Chater P A, Seshadri R and Rosseinsky M J 2013 Chem. Eur. J. 19 14521
[26] Baldrati L, Ross A, Niizeki T, Schneider C, Ramos R, Cramer J, Gomonay O, Filianina M, Savchenko T, Heinze D, Kleibert A, Saitoh E, Sinova J and Kläui M 2018 Phys. Rev. B 98 024422
[27] Hashim I, Park B and Atwater H A 1993 Appl. Phys. Lett. 63 2833
[28] Koch R 1994 J. Phys.:Condens. Matter 6 9519
[29] Pateras A, Harder R, Manna S, Kiefer B, Sandberg R L, Trugman S, Kim J W, Venta J de la, Fullerton E E, Shpyrko O G and Fohtung E 2019 NPG Asia Mater. 11 59
[30] Tan Y Y, Liang K, Mei Z H, Zhou P, Liu Y, Qi Y J, Ma Z J and Zhang T J 2018 Ceram. Int. 44 5564
[31] Luches P, Benedetti S, Bona A and Valeri S 2010 Phys. Rev. B 81 054431
[32] Zhang Y J, Chen J H, Li L L, Ma J, Nan C W and Lin Y H 2017 Phys. Rev. B 95 174420
[33] Hochstrat A, Binek C and Kleemann W 2002 Phys. Rev. B 66 092409
[34] Dubourg S, Bobo J F, Warot B, Snoeck E and Ousset J C 2005 Eur. Phys. J. B 45 175
[35] Malozemoff A P 1987 Phys. Rev. B 35 3679
[36] Liu Z Y and Adenwalla S 2003 Appl. Phys. Lett. 82 2106
[37] Driel J, Boer F R, Lenssen K M H and Coehoorn R 2000 J. Appl. Phys. 88 975
[38] Ali M, Marrows C H, Al-Jawad M, Hickey B J, Misra A, Nowak U and Usadel K D 2003 Phys. Rev. B 68 214420
[39] Rodríguez-Suárez R L, Vilela-Leão L H, Bueno T, Oliveira A B, Almeida J R L, Landeros P, Rezende S M and Azevedo A 2011 Phys. Rev. B 83 224418
[40] McCord J and Schäfer R 2009 New J. Phys. 11 083016
[41] Negulescu B, Thomas L, Dumont Y, Tessier M, Keller N and Guyot M 2002 J. Magn. Magn. Mater. 242 529
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[3] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[6] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[7] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[8] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[9] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[10] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[11] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[12] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[13] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[14] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[15] Properties of n-Ge epilayer on Si substrate with in-situ doping technology
Shi-Hao Huang(黄诗浩), Cheng Li(李成), Cheng-Zhao Chen(陈城钊), Chen Wang(王尘), Wen-Ming Xie(谢文明), Shu-Yi Lin(林抒毅), Ming Shao(邵明), Ming-Xing Nie(聂明星), Cai-Yun Chen(陈彩云). Chin. Phys. B, 2016, 25(6): 066601.
No Suggested Reading articles found!