Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047104    DOI: 10.1088/1674-1056/ac29b5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal

Jie Wang(王杰)1, Guang-Zhe Ma(马广哲)1, Lu Cao(曹露)1, Min Gao(高敏)2, and Dong Shi(石东)1,†
1 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable. Yet, the underlying physical mechanism remains poorly understood. Here, we report controllable solution-processed crystallization that affords high-quality CH3NH3PbBr3 single crystals with atomically flat pristine surfaces. Front-face photoluminescence (PL) shows doublet luminescence components with variable relative intensities depending on the crystal surface conditions. We further find that the low-energy PL component with asymmetric spectral line-shape becomes predominant when the atomically flat crystal surfaces are passivated in the ion-abundant saturated solutions, while poor-quality single crystal with visually rough surface only gives the high-energy PL with symmetric line-shape. The asymmetric spectral line-shape of the low-energy PL matches perfectly with the simulated bandedge emission. Therefore, the low-energy PL component is attributable to the intrinsic bandedge emission from the crystal bulk while the high-energy one to surface-specific emission. Elliott fitting to the absorption data and multi-exponential fitting to the time-resolved photoluminescence traces jointly indicate the coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystals, thereby catching the physical merit that leads to the occurrence of doublet luminescence.
Keywords:  semiconductor      crystal      surface      luminescence  
Received:  21 June 2021      Revised:  30 August 2021      Accepted manuscript online:  24 September 2021
PACS:  71.10.Li (Excited states and pairing interactions in model systems)  
  71.20.Nr (Semiconductor compounds)  
  71.15.Qe (Excited states: methodology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872038).
Corresponding Authors:  Dong Shi     E-mail:  dshi@uestc.edu.cn

Cite this article: 

Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东) Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal 2022 Chin. Phys. B 31 047104

[1] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506
[2] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W and Hagfeldt A 2017 Science 358 739
[3] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587
[4] Era M, Morimoto S, Tsutsui T and Saito S 1994 Appl. Phys. Lett. 65 676
[5] Hattori T, Taira T, Era M, Tsutsui T and Saito S 1996 Chem. Phys. Lett. 254 103
[6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[7] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[8] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[9] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[10] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
[11] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T and Friend R H 2014 J. Phys. Chem. Lett. 5 1421
[12] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476
[13] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J and Huang W 2018 Nature 562 249
[14] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245
[15] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404
[16] Lin Q, Armin A, Lyons D M, Burn P L and Meredith P 2015 Adv. Mater. 27 2060
[17] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L and Huang J 2016 Nat. Photonics 10 333
[18] Shrestha S, Fischer R, Matt G J, Feldner P, Michel T, Osvet A, Levchuk I, Merle B, Golkar S, Chen H, Tedde S F, Schmidt O, Hock R, Rührig M, Göken M, Heiss W, Anton G and Brabec C J 2017 Nat. Photonics 11 436
[19] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[20] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J and Huang W 2016 Nat. Photonics 10 699
[21] Tan H, Jain A, Voznyy O, Lan X, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722
[22] Wang Y, Li X, Nalla V, Zeng H and Sun H 2017 Adv. Funct. Mater. 27 1605088
[23] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[24] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
[25] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S and Haque S A 2017 Nat. Commun. 8 15218
[26] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photonics 13 460
[27] Volk S, Yazdani N, Yarema O, Yarema M and Wood V 2020 ACS Appl. Electron. Mater. 2 398
[28] Chen C X, Wang J, Gao M and Shi D 2020 Cryst. Growth Des. 21 45
[29] Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photonics 9 679
[30] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C and Liu S F 2015 Adv. Mater. 27 5176
[31] Comin R, Walters G, Thibau E S, Voznyy O, Lu Z H and Sargent E H 2015 J. Mater. Chem. C 3 8839
[32] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497
[33] She X J, Chen C, Divitini G, Zhao B, Li Y, Wang J, Orri J F, Cui L, Xu W, Peng J, Wang S, Sadhanala A and Sirringhaus H 2020 Nat. Electron. 3 694
[34] Yamada T, Yamada Y, Nakaike Y, Wakamiya A and Kanemitsu Y 2017 Phys. Rev. Appl. 7 014001
[35] van Roosbroeck W and Shockley W 1954 Phys. Rev. 94 1558
[36] Yamada T, Aharen T and Kanemitsu Y 2018 Phys. Rev. Lett. 120 057404
[37] Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A and Bongiovanni G 2014 Nat. Commun. 5 5049
[38] Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B and Herz L M 2018 Nat. Commun. 9 293
[39] D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[4] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[5] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[6] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[9] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[10] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[11] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[12] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[13] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[14] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[15] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
No Suggested Reading articles found!