Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046104    DOI: 10.1088/1674-1056/ac20ca
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements

Yuanchao Huang(黄渊超)1,2, Rong Wang(王蓉)2,†, Yixiao Qian(钱怡潇)2, Yiqiang Zhang(张懿强)3, Deren Yang(杨德仁)1,2, and Xiaodong Pi(皮孝东)1,2,‡
1 State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2 Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China;
3 School of Materials Science and Engineering&Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
Abstract  The p-type doping efficiency of 4H silicon carbide (4H-SiC) is rather low due to the large ionization energies of p-type dopants. Such an issue impedes the exploration of the full advantage of 4H-SiC for semiconductor devices. In this study, we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant, i.e., aluminum (Al), through the defect-level repulsion between the energy levels of group-IVB elements and that of Al in 4H-SiC. Among group-IVB elements Ti has the most prominent effectiveness. Ti decreases the ionization energy of Al by nearly 50%, leading to a value as low as ~0.13 eV. As a result, the ionization rate of Al with Ti co-doping is up to ~5 times larger than that without co-doping at room temperature when the doping concentration is up to 1018 cm-3. This work may encourage the experimental co-doping of group-IVB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4H-SiC.
Keywords:  4H-SiC      p-type      co-doping      ab initio study  
Received:  09 July 2021      Revised:  13 August 2021      Accepted manuscript online:  25 August 2021
PACS:  61.82.Fk (Semiconductors)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0205704 and 2018YFB2200101), the National Natural Science Foundation of China (Grant Nos. 91964107 and 61774133), Fundamental Research Funds for the Central Universities, China (Grant No. 2018XZZX003-02), the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 61721005), and Zhejiang University Education Foundation Global Partnership Fund. The National Supercomputer Center in Tianjin is acknowledged for computational support.
Corresponding Authors:  Rong Wang, Xiaodong Pi     E-mail:  rong_wang@zju.edu.cn;xdpi@zju.edu.cn

Cite this article: 

Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东) Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements 2022 Chin. Phys. B 31 046104

[1] Kimoto T and Cooper J A 2014 Fundamentals of silicon carbide technology:growth, characterization, devices and applications (John Wiley & Sons) pp. 1-6
[2] Wang F F and Zhang Z 2016 CPSS Trans. Power Electron. Appl. 1 13
[3] Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Iucolano F and Saggio M 2018 Microelectron. Eng. 187-188 66
[4] Evwaraye A O, Smith S R and Mitchel W C 1999 J. Appl. Phys. 79 7726
[5] Kimoto T, Itoh A, Matsunami H, Sridhara S, Clemen L L, Devaty R P and Pensl G 1995 Appl. Phys. Lett. 67 2833
[6] Wang R, Bhat I B and Chow T P 2002 J. Appl. Phys. 92 7587
[7] Darmody C and Goldsman N 2019 J. Appl. Phys. 126 145701
[8] Raynaud C and Autran J L 1996 J. Appl. Phys. 86 2232
[9] Koizumi A, Suda J and Kimoto T. 2009 J. Appl. Phys. 106 013716
[10] Parisini A and Nipoti R 2013 J. Appl. Phys. 114 243703
[11] Heera V, Panknin D and Skorupa W 2001 Appl. Surf. Sci. 184 307
[12] An J, Namai M, Yano H and Iwamuro N 2017 IEEE Trans. Electron. Devices. 64 4219
[13] Han L, Liang L, Kang Y and Qiu Y 2020 IEEE Trans. Power. Electron. 36 2080
[14] Usman M and Nawaz M 2014 Solid State Electron. 92 5
[15] Wang X and Cooper J A 2010 IEEE Trans. Electron. Devices 57 511
[16] Huang B, Yoon M, Sumpter B G, Wei S H and Liu F 2015 Phys. Rev. Lett. 115 126806
[17] Janotti A, Wei S H and Zhang S B 2002 Phys. Rev. B 65 115203
[18] Persson C, Platzer-Björkman C, Malmström J, Törndahl T and Edoff M 2006 Phys. Rev. Lett. 97 146403
[19] Yang J and Wei S H 2019 Chin. Phys. B 28 086106
[20] Zhu J, Liu F, Stringfellow G B and Wei S H 2010 Phys. Rev. Lett. 105 195503
[21] Xia J 2021 J. Semicond. 42 060402
[22] Segev D and Wei S H 2003 Phys. Rev. Lett. 91 126406
[23] Moussa J E, Marom N, Sai N and Chelikowsky J R 2012 Phys. Rev. Lett. 108 226404
[24] Tang L, Yue R and Wang Y 2018 Carbon 130 458
[25] Janotti A, Wei S H and Zhang S B 2003 Appl. Phys. Lett. 83 3522
[26] Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101
[27] Ye Z, He H and Jiang L 2018 Nano Energy 52 527
[28] Wang L G and Zunger A 2003 Phys. Rev. Lett. 90 256401
[29] Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H and Liang Q L 2006 Appl. Phys. Lett. 88 222114
[30] Yinzhu Z, Zhizhen Y, Jianguo L, Haiping H and Xiuquan G 2016 J. Semicond. 28 322
[31] Miyata M and Hayafuji Y 2008 Appl. Phys. Express. 1 111401
[32] Burns R G and Burns R G 1993 Mineralogical applications of crystal field theory (United Kingdom:Cambridge University Press) pp. 7-44
[33] Wei S H and Zhang S B. 2002 Phys. Rev. B 66 155211
[34] Nakata A and Tsuneda T 2013 J. Chem. Phys. 139 064102
[35] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[36] Ni Z, Pi X, Cottenier S and Yang D 2017 Phys. Rev. B 95 075307
[37] Wei S H 2004 Comput. Mater. Sci. 30 337
[38] Dalibor T, Pensl G, Nordell N and Schöner A 1997 Phys. Rev. B. 55 13618
[39] Achtziger N and Witthuhn W 1997 Appl. Phys. Lett. 71 110
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[6] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[7] Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors
Chen Zhou(周臣), Wang-Ping Cheng(程王平), Yuan-Di He(何媛娣), Cheng Shao(邵成), Ling Hu(胡令), Ren-Huai Wei(魏仁怀), Jing-Gang Qin(秦经刚), Wen-Hai Song(宋文海), Xue-Bin Zhu(朱雪斌), Chuan-Bing Cai(蔡传兵), and Yu-Ping Sun(孙玉平). Chin. Phys. B, 2022, 31(10): 107305.
[8] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[9] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[10] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[13] Ab initio study of dynamical properties of U-Nb alloy melt
Yong-Peng Shi(时永鹏), Ming-Feng Liu(刘鸣凤), Yun Chen(陈云), Wen-Lin Mo(莫文林), Dian-Zhong Li(李殿中), Tao Fa(法涛), Bin Bai(白彬), Xiao-Lin Wang(汪小琳), and Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2021, 30(12): 126105.
[14] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[15] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
No Suggested Reading articles found!