Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120510    DOI: 10.1088/1674-1056/ac1fdc
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Enhance sensitivity to illumination and synchronization in light-dependent neurons

Ying Xie(谢盈)1, Zhao Yao(姚昭)1, Xikui Hu(胡锡奎)2, and Jun Ma(马军)1,2,†
1 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China;
2 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China
Abstract  When a phototube is activated to connect a neural circuit, the output voltage becomes sensitive to external illumination because the photocurrent across the phototube can be controlled by external electromagnetic wave. The channel currents from different branch circuits have different impacts on the outputs voltage of the neural circuit. In this paper, a phototube is incorporated into different branch circuits in a simple neural circuit, and then a light-controlled neuron is obtained for further nonlinear analysis. Indeed, the phototube is considered as exciting source when it is activated by external illumination, and two kinds of light-sensitive neurons are obtained when the phototube is connected to capacitor or induction coil, respectively. Electric synapse coupling is applied to detect possible synchronization between two functional neurons, and the energy consumption along the coupling channel via resistor is estimated. The analog circuits for the two kinds of light-sensitive neurons are supplied for further confirmation by using Multisim. It is found that two light-sensitive neurons and neural circuits can be synchronized by taming the coupling intensity carefully. It provides possible clues to understand the synchronization mechanism for eyes and artificial sensors which are sensitive to illumination. Finally, a section for open problems is supplied for further investigation about its collective behaviors in the network with/without synapse coupling.
Keywords:  light-sensitive neuron      synchronization      energy consumption      bifurcation      neural circuit  
Received:  14 July 2021      Revised:  09 August 2021      Accepted manuscript online:  22 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12062009).
Corresponding Authors:  Jun Ma     E-mail:

Cite this article: 

Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军) Enhance sensitivity to illumination and synchronization in light-dependent neurons 2021 Chin. Phys. B 30 120510

[1] Tang J, Zhang J, Ma J, Zhang G Y and Yang X Q 2017 Sci. China Technol. Sci. 60 1011
[2] Tabi C B, Etémé A S, Mohamadou A and Kofané T C 2019 Chaos, Solitons & Fractals 123 116
[3] Kundu S, Majhi S and Ghosh D 2019 Nonlinear Dyn. 98 1659
[4] Baysal V and Yilmaz E 2020 Physica A 537 122733
[5] Shaverdi Y, Panahi S, Kapitaniak T and Jafari S 2019 Eur. Phys. J. Spec. Top. 228 2405
[6] Ditlevsen S and Greenwood P 2013 J. Math. Biol. 67 239
[7] Mondal A, Upadhyay R K, Ma J, Yadav B K, Sharma S K and Mondal A 2019 Cogn. Neurodyn. 13 393
[8] Lin H, Wang C, Sun Y and Wang Y 2020 Nonlinear Dyn. 100 3667
[9] Shilnikov A L and Rulkov N F 2004 Phys. Lett. A 328 177
[10] Nobukawa S, Nishimura H, Yamanishi T and Liu J Q 2015 PloS One 10 e0138919
[11] Ascoli A, Slesazeck S, Mähne H, Tetzlaff R and Mikolajick T 2015 IEEE Tr. Circ. Syst. I 62 1165
[12] Kvatinsky S, Friedman E, Kolodny A and Weiser U 2013 IEEE Circ. Syst. Mag. 13 17
[13] Bao H, Chen M, Wu H G and Bao B C 2019 Sci. China Technol. Sci. 63 603
[14] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[15] Sickinger H, Lipman A, Weides M, Mints R G, Kohlstedt H, Koelle D, Kleiner R and Goldobin E 2012 Phys. Rev. Lett. 109 107002
[16] Zhang Y, Zhou P, Tang J and Ma J 2021 Chin. J. Phys. 71 72
[17] Zhang Y, Xu Y, Yao Z and Ma J 2020 Nonlinear Dyn. 102 1849
[18] Zhang Y, Wang C, Tang J, Ma J and Ren G D 2020 Sci. China Technol. Sci. 63 2328
[19] Zhang H, Wang L, Zhang P, Zhang X D and Ma J 2021 Chin. Phys. B 30 038702
[20] Kafraj M S, Parastesh F and Jafari S 2020 Chaos, Solitons & Fractals 137 109782
[21] Feltz A and Pölzl W 2000 J. Euro. Cera. Soc. 20 2353
[22] Yakovleva M, Bhand S and Danielsson B 2013 Analytica Chimica Acta 766 1
[23] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704
[24] Nakayama T 1985 Jpn. J. Physiol. 35 375
[25] Madrid R, De La Peña E, Donovan-Rodriguez T, Belmonte C and Viana F 2009 J. Neurosci. 29 3120
[26] Liu Y, Xu W, Ma J, Alzahrani F and Hobiny A 2020 Front. Inform. Technol. Electronic Eng. 21 1387
[27] Kartelija G, Nedeljkovic M and Radenovic L 2003 Comp. Biochem. Phys. A 134 483
[28] Rodríguez-Sosa L, Calderón-Rosete G, Flores G and Porras M G 2007 Synapse 61 801
[29] Yao Z, Zhou P, Zhu Z and Ma J 2021 Neurocomputing 423 518
[30] Tzen J J, Jeng S L and Chieng W H 2003 Precis. Engin. 27 70
[31] Richter H, Misawa E A, Lucca D A and Lu H 2001 Precis. Engin. 25 128
[32] Wang Q and Quek S T 2000 Smart Mater. Struct. 9 103
[33] Elvin N G and Elvin A A 2009 J. Intel. Mat. Syst. Struct. 20 3
[34] Flynn A M and Sanders S R 2002 IEEE Tr. Power Electr. 17 8
[35] Eltamaly A M and Addoweesh K E 2016 IEEE Tr. Power Electr. 32 7663
[36] Smyth K and Kim S G 2015 IEEE Tr. Ultrason. Ferr. 62 744
[37] Zhou P, Yao Z, Ma J and Zhu Z G 2021 Chaos, Solitons & Fractals 145 110751
[38] Zhou P, Ma J and Tang J 2020 Nonlinear Dyn. 100 2353
[39] Ma J 2022 Chaos Theory Applicat. 4 1
[40] Ma J, Yang Z, Yang L and Tang J 2019 J. Zhejiang Univ. Sci. A 20 639
[41] Thanapitak S and Toumazou C 2012 IEEE Tr. Biomed. Circ. Syst. 7 296
[42] Kamermans M and Fahrenfort I 2004 Curr. Opin. Neurobiol. 14 531
[43] Gardner D and Kandel E R 1972 Science 176 675
[44] Parnas H and Parnas I 2007 Trends Neurosci. 30 54
[45] Kawato M, Sokabe M and Suzuki R 1979 Biol. Cybern. 34 81
[46] O'brien J 2014 Curr. Opin. Neurobiol. 29 64
[47] Miller A C and Pereda A E 2017 Dev. Neurobiol. 77 562
[48] Martin E A, Lasseigne A M and Miller A C 2020 Front. Neuroanat. 14 12
[49] Xu Y, Yao Z, Hobiny A and Ma J 2019 Front. Inform. Technol. Electron. Eng. 20 571
[50] Yao Z, Ma J, Yao Y and Wang C 2019 Nonlinear Dyn. 96 205
[51] Liu Z, Wang C, Zhang G and Zhang Y 2019 Int. J. Mod. Phys. B 33 1950170
[52] Liu Y, Huang W, Wang X, Liang R, Wang J, Yu B, Ren T L and Xu J 2018 IEEE J. Electron. Devi. 7 13
[53] Aghnout S and Karimi G 2019 Integr. 64 184
[54] Wang W, He C, Wang Z, Cheng J, Mo X S, Tian K, Fan D G, Luo X, Yuan M M and Kurth J 2021 Neurocomputing 456 23
[55] Ma S Y, Zhou P, Ma J and Wang C 2020 Int. J. Mod. Phys. B 34 2050074
[56] Liu Z L, Zhou P, Ma J, Hobiny A and Alzahrani F 2020 Chaos, Solitons & Fractals 131 109533
[57] Rajagopal K, Jafari S, Moroz I, Karthikeyan A and Srinivasan A 2021 Chaos 31 073117
[58] Rajagopal K, Ramesh A, Moroz I, Duraisamy P and Karthikeyan A 2021 Chaos 31 063111
[59] Rajagopal K, Ramesh A, Moroz I, Duraisamy P and Karthikeyan A 2021 Chaos 31 063111
[60] Rajagopal K, Jafari S, Li C, Karthikeyane A and Duraisamya P 2021 Chaos, Solitons & Fractals 146 110855
[61] Rajagopal K, Jafari A, He S, Parastesh F, Jafari S and Hussain I 2021 Eur. Phys. J. Spec. Top.
[62] Zhou C, Wang C, Sun Y and Wang Y 2020 Neurocomput. 403 211
[63] Yao W, Wang C, Cao J, Sun Y and Zhou C 2019 Neurocomput. 363 281
[64] Yao W, Wang C, Sun Y, Zhou C and Lin H 2020 Neurocomputing 404 367
[65] Zhang Y, Zhou P, Yao Z and Ma J 2021 Pramana J. Phys. 95 49
[1] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[2] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[3] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[4] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[5] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[6] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[7] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[10] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2021, 30(12): 120505.
[13] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[14] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[15] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
No Suggested Reading articles found!