Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097203    DOI: 10.1088/1674-1056/ac11d2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-dependent resistance and giant gauge factor in monolayer WSe2

Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏)
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Abstract  We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the emergence of nonzero Berry curvature dipole. Upon increasing strain, Berry curvature dipole can generate net orbital magnetization, which would introduce additional magnetic scattering, decreasing the mobility and thus conductivity. Our work demonstrates the strain engineering of Berry curvature and thus the transport properties, making monolayer WSe2 potential for application in the highly sensitive strain sensors and high-performance flexible electronics.
Keywords:  strain engineering      van der Waals materials      symmetry breaking      orbital magnetization      Berry curvature  
Received:  19 June 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703703) and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004).
Corresponding Authors:  Zhi-Min Liao     E-mail:  liaozm@pku.edu.cn

Cite this article: 

Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏) Strain-dependent resistance and giant gauge factor in monolayer WSe2 2021 Chin. Phys. B 30 097203

[1] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451
[2] Schaibley J R, Yu H, Clark G, et al. 2016 Nat. Rev. Mater. 1 16055
[3] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2017 Nat. Rev. Mater. 2 17033
[4] Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271
[5] Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805
[6] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[7] Lee G H, Yu Y J, Cui X, et al. 2013 ACS Nano 7 7931
[8] Pu J, Yomogida Y, Liu K K, et al. 2012 Nano Lett. 12 4013
[9] Cheng R, Jiang S, Chen Y, et al. 2014 Nat. Commun. 5 5143
[10] Yan W, Fuh H R, Lv Y, et al. 2021 Nat. Commun. 12 2018
[11] Johari P and Shenoy V B 2012 ACS Nano 6 5449
[12] Peelaers H and Van de Walle C G 2012 Phys. Rev. B 86 241401
[13] Scalise E, Houssa M, Pourtois G, et al. 2012 Nano Res. 5 43
[14] Conley H J, Wang B, Ziegler J I, et al. 2013 Nano Lett. 13 3626
[15] Ghorbani Asl M, Borini S, Kuc A, et al. 2013 Phys. Rev. B 87 235434
[16] He K, Poole C, Mak K F, et al. 2013 Nano Lett. 13 2931
[17] Cazalilla M A, Ochoa H and Guinea F 2014 Phys. Rev. Lett. 113 077201
[18] Wang L, Kutana A and Yakobson B I 2014 Annalen Der. Physik 526 L7
[19] Lanzillo N A, Simbeck A J and Nayak S K 2015 J. Phys.: Condens. Matter 27 175501
[20] Manzeli S, Allain A, Ghadimi A, et al. 2015 Nano Lett. 15 5330
[21] Rostami H, Roldán R, Cappelluti E, et al. 2015 Phys. Rev. B 92 195402
[22] Feng J, Qian X, Huang C W, et al. 2012 Nat. Photon. 6 866
[23] Wu W, Wang L, Li Y, et al. 2014 Nature 514 470
[24] Zhu H, Wang Y, Xiao J, et al. 2015 Nat. Nanotech. 10 151
[25] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
[26] Levy N, Burke S A, Meaker K L, et al. 2010 Science 329 544
[27] Tsai M Y, Tarasov A, Hesabi Z R, et al. 2015 ACS Appl. Mater. Interfaces 7 12850
[28] Qin M S, Zhu P F, Ye X G, et al. 2021 Chin. Phys. Lett. 38 017301
[29] Sun Y, Wu S C, Ali M N, et al. 2015 Phys. Rev. B 92 161107
[30] Wu F, Lovorn T, Tutuc E, et al. 2018 Phys. Rev. Lett. 121 026402
[31] Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804
[32] Rata A D, Herklotz A, Nenkov K, et al. 2008 Phys. Rev. Lett. 100 076401
[33] Thiele C, Dörr K, Bilani O, et al. 2007 Phys. Rev. B 75 054408
[34] Thiele C, Dörr K, Fähler S, et al. 2005 Appl. Phys. Lett. 87 262502
[35] Herklotz A, Plumhof J D, Rastelli A, et al. 2010 J. Appl. Phys. 108 094101
[36] Zomer P J, Guimarães M H D, Brant J C, et al. 2014 Appl. Phys. Lett. 105 013101
[37] Movva H C P, Rai A, Kang S, et al. 2015 ACS Nano 9 10402
[38] Li Y, Rao Y, Mak K F, et al. 2013 Nano Lett. 13 3329
[39] Mennel L, Furchi M M, Wachter S, et al. 2018 Nat. Commun. 9 516
[40] Martin F, ter Brake H J M, Lebrun L, et al. 2012 J. Appl. Phys. 111 104108
[41] Hou W, Azizimanesh A, Sewaket A, et al. 2019 Nat. Nanotechnol. 14 668
[42] Chen Y, Zhang Y, Keil R, et al. 2017 Nano Lett. 17 7864
[43] Molitor F, Güttinger J, Stampfer C, et al. 2007 Phys. Rev. B 76 245426
[44] Chen C T, Low T, Chiu H Y, et al. 2012 IEEE Electron Device Lett. 33 330
[45] Gazibegovic S, Car D, Zhang H, et al. 2017 Nature 548 434
[46] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[47] Son J, Kim K H, Ahn Y H, et al. 2019 Phys. Rev. Lett. 123 036806
[1] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[2] Magnetic two-dimensional van der Waals materials forspintronic devices
Yu Zhang(张雨), Hongjun Xu(许洪军), Jiafeng Feng(丰家峰), Hao Wu(吴昊), Guoqiang Yu(于国强), and Xiufeng Han(韩秀峰). Chin. Phys. B, 2021, 30(11): 118504.
[3] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[4] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[5] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[6] Strain engineering of electronic and magnetic properties of Ga2S2 nanoribbons
Bao-Ji Wang(王宝基), Xiao-Hua Li(李晓华), Li-Wei Zhang(张利伟), Guo-Dong Wang(王国东), San-Huang Ke(柯三黄). Chin. Phys. B, 2017, 26(5): 057102.
[7] Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances
Bo Tian(田波), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Bin Jia(贾斌). Chin. Phys. B, 2017, 26(2): 020503.
[8] One-dimensional ZnO nanostructure-based optoelectronics
Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃). Chin. Phys. B, 2017, 26(11): 118102.
[9] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[10] Statistical physics of hard combinatorial optimization:Vertex cover problem
Zhao Jin-Hua, Zhou Hai-Jun. Chin. Phys. B, 2014, 23(7): 078901.
[11] Asymmetric simple exclusion processes with complex lattice geometries: A review of models and phenomena
Liu Ming-Zhe, Li Shao-Da, Wang Rui-Li. Chin. Phys. B, 2012, 21(9): 090510.
[12] Spontaneous symmetry breaking vacuum energy in cosmology
Zhou Kang, Yue Rui-Hong, Yang Zhan-Ying, Zou De-Cheng. Chin. Phys. B, 2012, 21(7): 079801.
[13] Seeing time-reversal transmission characteristics through kinetic anti-ferromagnetic Ising chain
Chen Ying-Ming,Wang Bing-Zhong. Chin. Phys. B, 2012, 21(2): 026401.
[14] Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu Zhen-Tao, Zhou Jing, Li Ping, Chen Xing-Guang. Chin. Phys. B, 2012, 21(10): 100503.
[15] Spontaneous symmetry breaking of a Bose–Fermi mixture in a two-dimensional double-well potential
Wang Yuan-Sheng, Yan Pei-Gen, Li Bin, Liu Xue-Shen. Chin. Phys. B, 2012, 21(1): 010309.
[1] ZHAO RU-GUANG, HU CHUAN, ZHANG YUN, JIA JIN-FENG, YANG WEI-SHENG. QUASI-KINEMATIC LOW-ENERGY ELECTRON DIFFRACTION AND ITS LATEST APPLICATIONS[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(3): 219 -224 .
[2] SHENG WEI-DONG, XIA JIAN-BAI. SUPPRESSION OF BALLISTIC ELECTRON TRANSMISSION THROUGH A SEMICONDUCTOR Π-STRUCTURE BY AN EXTERNAL TRANSVERSE ELECTRIC FIELD[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(9): 700 -704 .
[3] Guo Wei-Bin, Wang Neng-Chao, Shi Bao-Chang, Guo Zhao-Li. Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder[J]. Chin. Phys., 2003, 12(1): 67 -74 .
[4] Liu Wei-Dong, K. F. Ren, S. Meunier-Guttin-Cluzel, G. Gouesbet. Global vector-field reconstruction of nonlinear dynamical systems from a time series with SVD method and validation with Lyapunov exponents[J]. Chin. Phys., 2003, 12(12): 1366 -1373 .
[5] Luo Yi, Luo Shao-Kai, Chen Li-Qun, Fu Jing-Li. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chin. Phys., 2003, 12(4): 351 -356 .
[6] Cai Jian-Le, Luo Shao-Kai, Jia Li-Qun. A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems[J]. Chin. Phys., 2003, 12(8): 841 -845 .
[7] Feng Guo-Lin, Dong Wen-Jie, Jia Xiao-Jing. Application of retrospective time integration scheme to the prediction of torrential rain[J]. Chin. Phys., 2004, 13(3): 413 -422 .
[8] Tao Yong-Mei, Jiang Qing. Study of BaxSr1-xTiO3 thin films using transverse-field Ising model[J]. Chin. Phys., 2004, 13(7): 1149 -1155 .
[9] Chen Liang, Zhang Geng-Min, Wang Ming-Sheng, Zhang Qi-Feng. Field emission from zinc oxide nanowires[J]. Chin. Phys., 2005, 14(1): 181 -185 .
[10] Wu Bai-Zhi, Xu You-Sheng, Liu Yang, Huang Guo-Xiang. Numerical simulation for separation of multi-phase immiscible fluids in porous media[J]. Chin. Phys., 2005, 14(10): 2046 -2051 .