Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087304    DOI: 10.1088/1674-1056/ac0a5e
RAPID COMMUNICATION Prev   Next  

Magneto-transport properties of thin flakes of Weyl semiconductor tellurium

Nan Zhang(张南)1,2, Bin Cheng(程斌)1,2, Hui Li(李惠)3, Lin Li(李林)1,2,†, and Chang-Gan Zeng(曾长淦)1,2,‡
1 International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information&Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  As an elemental semiconductor, tellurium has recently attracted intense interest due to its non-trivial band topology, and the resulted intriguing topological transport phenomena. In this study we report systematic electronic transport studies on tellurium flakes grown via a simple vapor deposition process. The sample is self-hole-doped, and exhibits typical weak localization behavior at low temperatures. Substantial negative longitudinal magnetoresistance under parallel magnetic field is observed over a wide temperature region, which is considered to share the same origin with that in tellurium bulk crystals, i.e., the Weyl points near the top of valence band. However, with lowering temperature the longitudinal magnetoconductivity experiences a transition from parabolic to linear field dependency, differing distinctly from the bulk counterparts. Further analysis reveals that such a modulation of Weyl behaviors in this low-dimensional tellurium structure can be attributed to the enhanced inter-valley scattering at low temperatures. Our results further extend Weyl physics into a low-dimensional semiconductor system, which may find its potential application in designing topological semiconductor devices.
Keywords:  Weyl physics      tellurium flakes      negative longitudinal magnetoresistance  
Received:  07 June 2021      Revised:  07 June 2021      Accepted manuscript online:  11 June 2021
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.61.Cw (Elemental semiconductors)  
  73.20.Fz (Weak or Anderson localization)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC07010000), the National Natural Science Foundation of China (Grant Nos. 11974324, U1832151, 11804326, and 11904001), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative Fund in Quantum Information Technologies (Grant No. AHY170000), and the Fund from the Hefei Science Center, Chinese Academy of Sciences (Grant No. 2020HSC-UE014).
Corresponding Authors:  Lin Li, Chang-Gan Zeng     E-mail:  lilin@ustc.edu.cn;cgzeng@ustc.edu.cn

Cite this article: 

Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦) Magneto-transport properties of thin flakes of Weyl semiconductor tellurium 2021 Chin. Phys. B 30 087304

[1] Hirayama M, Okugawa R, Ishibashi S, Murakami S and Miyake T 2015 Phys. Rev. Lett. 114 206401
[2] Anzin V B, Eremets M I, Kosichkin Y V, Nadezhdinskii A I and Shirokov A M 1977 Phys. Status Solidi A 42 385
[3] Gerlach E and Grosse P 1979 The Physics of Selenium and Tellurium (New York: USA Springer)
[4] He Z, Yang Y, Liu J and Yu S 2017 Chem. Soc. Rev. 46 2732
[5] Wu W, Qiu G, Wang Y, Wang R and Ye P 2018 Chem. Soc. Rev. 47 7203
[6] Agapito L A, Kioussis N, Goddard W A and Ong N P 2013 Phys. Rev. Lett. 110 176401
[7] Tsirkin S S, Souza I and Vanderbilt D 2017 Phys. Rev. B 96 045102
[8] Murakami S, Hirayama M, Okugawa R and Miyake T 2017 Sci. Adv. 3 e1602680
[9] Nakayama K, Kuno M, Yamauchi K, Souma S, Sugawara K, Oguchi T, Sato T and Takahashi T 2017 Phys. Rev. B 95 125204
[10] Tsirkin S S, Puente P A and Souza I 2018 Phys. Rev. B 97 035158
[11] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530
[12] Qiu G, Niu C, Wang Y, Si M, Zhang Z, Wu W and Ye P D 2020 Nat. Nanotechnol. 15 585
[13] Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z and Zeng C 2020 Proc. Natl. Acad. Sci. USA 117 11337
[14] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J, Xu X, Ye P D and Wu W 2018 Nat. Electron. 1 228
[15] Amani M, Tan C, Zhang G, Zhao C, Bullock J, Song X, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M and Javey A 2018 ACS Nano 12 7253
[16] Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965
[17] Qiu G, Wang Y, Nie Y, Zheng Y, Cho K, Wu W and Ye P D 2018 Nano Lett. 18 5760
[18] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Phys. Rev. B 101 205414
[19] Ren X, Wang Y, Xie Z, Xue F, Leighton C and Frisbie C D 2019 Nano Lett. 19 4738
[20] Wang Q, Safdar M, Xu K, Mirza M, Wang Z and He J 2014 ACS Nano 8 7497
[21] Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (New York: McGraw-Hill)
[22] Von Klitzing K and Landwehr G 1971 Solid State Commun. 9 2201
[23] Berezovets V A, Farbshtein I I and Shelankov A L 1984 JETP Lett. 39 74
[24] Tanuma S 1954 Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6 159
[25] Englert T, von Klitzing K, Silbermann R and Landwehr G 1977 Phys. Status Solidi B 81 119
[26] Lu H and Shen S 2017 Front. Phys. 12 127201
[27] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[28] Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
[29] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[30] Li C, Wang L, Liu H, Wang J, Liao Z and Yu D 2015 Nat. Commun. 6 10137
[31] Li H, He H, Lu H, Zhang H, Liu H, Ma R, Fan Z, Shen S and Wang J 2016 Nat. Commun. 7 10301
[32] Zhang C, Xu S, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C, Huang S, Chang T R, Chang G, Hsu C, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H, Shen S, Neupert T, Zahid Hasan M and Jia S 2016 Nat. Commun. 7 10735
[33] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[34] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[35] Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin Carina A, Bernevig B A, Cava R J and Ong N P 2016 Nat. Mater. 15 1161
[36] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
[37] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142
[38] Guo C Y, Wu F, Wu Z Z, Smidman M, Cao C, Bostwick A, Jozwiak C, Rotenberg E, Liu Y, Steglich F and Yuan H Q 2018 Nat. Commun. 9 4622
[39] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[40] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[41] Burkov A A 2014 Phys. Rev. Lett. 113 247203
[42] Goswami P, Pixley J H and Das Sarma S 2015 Phys. Rev. B 92 075205
[43] Ji X, Lu H, Zhu Z and Su G 2017 AIP Adv. 7 105003
[44] Ji X, Lu H, Zhu Z and Su G 2018 J. Appl. Phys. 123 203901
[1] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[2] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[3] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[4] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[5] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[6] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[7] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[8] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[9] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[10] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[11] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[12] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[13] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[14] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[15] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[1] Liu Bing-Chen, Ni Guo-Quan, Xu Zhi-Zhan, Li Shao-Hui. Investigation of the time characteristics of a pulsed flow of large rare gas clusters[J]. Chin. Phys., 2003, 12(8): 856 -860 .
[2] Qiang Wen-Chao. Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential[J]. Chin. Phys., 2004, 13(5): 575 -578 .
[3] Yang Chun-Ling, Wang Yu-Ye, Zhao Dong-Yang, Zhao Guo-Liang. The measuring of spectral emissivity of object using chaotic optimal algorithm[J]. Chin. Phys., 2005, 14(10): 2041 -2045 .
[4] Qian Xiao-Ling, Hu Feng-Xia, Gao Ju, Wang Guang-Jun, Sun Ji-Rong, Shen Bao-Gen, Cheng Zhao-Hua. Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn13-type compounds LaFeCoSi[J]. Chin. Phys., 2005, 14(11): 2329 -2334 .
[5] Zhou Qian, Wan Bao-Nian, Wu Zhen-Wei, Huang Juan. The carbon impurity particle transport in ohmic discharges on the HT-7 tokamak[J]. Chin. Phys., 2005, 14(12): 2539 -2545 .
[6] Zhang Hong-Bin, Chen Li-Qun, Liu Rong-Wan. The discrete variational principle in Hamiltonian formalism and first integrals[J]. Chin. Phys., 2005, 14(6): 1063 -1068 .
[7] Song Yun-Zhong, Zhao Guang-Zhou, Qi Dong-Lian. Passive control of chaotic system with multiple strange attractors[J]. Chin. Phys., 2006, 15(10): 2266 -2270 .
[8] Muhammad Abbas Bari, Zhong Jia-Yong, Chen Min, Zhao Jing, Zhang Jie. Calculation of plasma characteristics of the sun[J]. Chin. Phys., 2006, 15(11): 2578 -2582 .
[9] Mei Feng-Xiang, Xu Xue-Jun. First integrals and stability of second-order differential equations[J]. Chin. Phys., 2006, 15(6): 1134 -1136 .
[10] Chen Guang-De, Yan Guo-Jun, Ye Hong-Gang, Lv Hui-Min. Synthesis of hexagonal monocrystal AlN microtubes and nanowires at low temperature[J]. Chin. Phys., 2007, 16(9): 2814 -2817 .