Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086102    DOI: 10.1088/1674-1056/ac0783
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Evolution of helium bubbles in nickel-based alloy by post-implantation annealing

Rui Zhu(朱睿)1,2, Qin Zhou(周钦)1,†, Li Shi(史力)1, Li-Bin Sun(孙立斌)1, Xin-Xin Wu(吴莘馨)1, Sha-Sha Lv(吕沙沙)3,‡, and Zheng-Cao Li(李正操)2
1 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2 Key Laboratory of Advanced Materials(Ministry of Education), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
3 Key Laboratory of Beam Technology, Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures. In the present study, alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×1017 ions/cm2 at room temperature. Throughout the cross-section transmission electron microscopy (TEM) image, numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result. Post-implantation annealing was conducted at 700 ℃ for 2 h to investigate the bubble evolution. The long-range migration of helium bubbles occurred during the annealing process, which makes the bubbles of the peak region transform into a faceted shape as well. Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence (MC) mechanism. With the diffusion of nickel atoms slowed down by the alloy elements, the migration and coalescence of bubbles are suppressed in alloy 617, leading to a better helium irradiation resistance.
Keywords:  helium bubble      coarsening mechanism      nickel-based alloy  
Received:  13 January 2021      Revised:  31 March 2021      Accepted manuscript online:  03 June 2021
PACS:  61.72.U- (Doping and impurity implantation)  
  61.80.Jh (Ion radiation effects)  
  61.82.-d (Radiation effects on specific materials)  
Fund: Project supported by the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2017YFB0702201 and 2020YFB1901800) and the National Natural Science Foundation of China (Grant Nos. 11975135 and 12005017).
Corresponding Authors:  Qin Zhou, Sha-Sha Lv     E-mail:  qinzhou@tsinghua.edu.cn;lvss@bnu.edu.cn

Cite this article: 

Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操) Evolution of helium bubbles in nickel-based alloy by post-implantation annealing 2021 Chin. Phys. B 30 086102

[1] Abram T and Ion S 2008 Energy Policy 36 4323
[2] Locatelli G, Mancini M and Todeschini N 2013 Energy Policy 61 1503
[3] Forsberg C W, Peterson P F and Pickard P S 2003 Nucl. Technol. 144 289
[4] Ren W and Swindeman R 2009 Journal of Pressure Vessel Technology 131 044002
[5] Sharma S K, Ko G D, Li F X and Kang K J 2008 J. Nucl. Mater. 378 144
[6] Wolfer W 2012 Fundamental properties of defects in metals
[7] Trinkaus H and Singh B 2003 J. Nucl. Mater. 323 229
[8] Schroeder H, Kesternich W and Ullmaier H 1985 Nuclear Engineering and Design: Fusion 2 65
[9] Ullmaier H 1984 Nuclear Fusion 24 1039
[10] Singh B and Trinkaus H 1992 J. Nucl. Mater. 186 153
[11] Greenwood G, Foreman A and Rimmer D 1959 J. Nucl. Mater. 1 305
[12] Carsughi F, Ullmaier H, Trinkaus H, Kesternich W and Zell V 1994 J. Nucl. Mater. 212 336
[13] Villacampa I, Chen J, Spätig P, Seifert H and Duval F 2018 J. Nucl. Mater. 500 389
[14] Chen Y, Li Y, Ran G, Wu L, Ye C, Han Q, Wang H and Du H 2020 Prog. Nucl. Energy 129 103502
[15] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms 268 1818
[16] Lv S, Zhu R, Zhao Y, Li M, Wang G, Qiu M, Liao B, Hua Q, Cheng J and Li Z 2020 Chin. Phys. B 29 040704
[17] Zhang Y, Lian J, Zhu Z, Bennett W D, Saraf L V, Rausch J L, Hendricks C A, Ewing R and Weber W J 2009 J. Nucl. Mater. 389 303
[18] Goodhew P 1981 The shape of an overpressurized bubble
[19] Chernikov V, Trinkaus H, Jung P and Ullmaier H 1990 J. Nucl. Mater. 170 31
[20] Trinkaus H 1989 Scripta Metallurgica 23 1773
[21] Chernikov V, Trinkaus H and Ullmaier H 1997 J. Nucl. Mater. 250 103
[22] Wei Q, Nan L, Kai S and Wang L M 2010 Scripta Materialia 63 430
[23] Gao J, Bao L, Huang H, Li Y, Zeng J, Liu Z, Liu R and Shi L 2016 Materials 9 832
[24] Yan Z, Liu S, Xia S, Zhang Y, Wang Y and Yang T 2018 J. Nucl. Mater. 505 200
[25] Liu J, Huang H, Liu R, Zhu Z, Lei Q, Liu A and Li Y 2020 J. Nucl. Mater. 537 152184
[26] Zhang W, Han H, Dai J, Ren C, Wang C, Yan L, Huang H and Zhu Z 2019 J. Nucl. Mater. 518 48
[1] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[2] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
[3] Growth mode of helium crystal near dislocations in titanium
Bao-Ling Zhang(张宝玲), Bao-Wen Wang(王保文), Xue Su(苏雪), Xiao-Yong Song(宋小勇), Min Li(李敏). Chin. Phys. B, 2018, 27(6): 060205.
[4] A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials
Quan Song(宋泉), Fan-Xin Meng(孟繁新), Bo-Yuan Ning(宁博元), Jun Zhuang(庄军), Xi-Jing Ning(宁西京). Chin. Phys. B, 2017, 26(12): 126601.
[5] Atomic origins of solid helium bubbles in tungsten
Xia Min, Guo Hong-Yan, Dai Yong, Yan Qing-Zhi, Guo Li-Ping, Li Tie-Cheng, Qiao Yi, Ge Chang-Chun. Chin. Phys. B, 2014, 23(12): 127806.
[6] Molecular dynamics study of helium bubble pressure in titanium
Zhang Bao-Ling, Wang Jun, Hou Qing. Chin. Phys. B, 2011, 20(3): 036105.
[1] MAO ZHI-QIANG, YANG LI, FAN CHENG-GAO, WANG NAN-LIN, YAO ZHEN, WANG YU, JI MING-RONG, ZHANG YU-HENG. STRUCTURE AND PROPERTIES OF THE La-DOPED Bi-2201 SYSTEM[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(8): 591 -603 .
[2] D.B. GRAVES, WU HAN-MING, LI MING, R.K PORTEOUS. BEHAVIOR OF Ar PLASMA FORMED IN A HIGH DENSITY PLASMA SOURCE-AN ECR REACTOR[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(10): 746 -757 .
[3] WANG HAI-LONG, YANG XI-ZHEN, FENG SONG-LIN, ZHOU JIE. DETERMINATION OF CAPTURE BARRIERS OF DEFECTS FOR GaAs ALLOYS AND TRANSIENT PHOTO-RESISTIVITY SPECTROSCOPY[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(1): 1 -9 .
[4] Fang Jin-qing, Chen Guan-rong, Hong Yi-guang, Qin Hua-shu. CONTROLLING HOPF BIFURCATIONS: CONTINUOUS-TIME SYSTEMS[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(6): 416 -422 .
[5] Liu Xiao-Dong, Li Shu-Guang, Guo Hong-Lian, Zhang Dao-Zhong, Li Zhao-Lin, Hou Lan-Tian. Effects of matrices on Mie scattering in the mid-infrared region[J]. Chin. Phys., 2003, 12(10): 1143 -1148 .
[6] Wang Shu-Xia, Zhang Han, Liu Wen-Li, Han Sheng-Hao. Combinative energy, oxygen deficiency and superconductivity in LnBa2Cu3O7-x(Ln=Nd, Er, Sm)[J]. Chin. Phys., 2003, 12(11): 1291 -1295 .
[7] Jiang Li-Xia, Xia Zhao-Yang, Meng Ji-Bao, Chen Zhao-Jia, Luo Jian-Lin, Wang Nan-Lin. Low-temperature specific heat and resistance for the heavy-electron metals CeCu6-xMx (M=Ni,Zn)[J]. Chin. Phys., 2004, 13(12): 2130 -2135 .
[8] Bi Yong, Bo Yong, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan, Geng Ai-Cong, Sun Zhi-Pei, Yang Xiao-Dong, Peng Qin-Jun, Li Hui-Qing. 1.15kW continuous-wave generation by diode-side-pumped two-rod Nd:YAG laser[J]. Chin. Phys., 2005, 14(4): 771 -773 .
[9] Xie Wen-Xian, Xu Wei, Jin Yan-Fei, Cai Li. Upper bound for the time derivative of entropy for a dynamical system driven by coloured cross-correlated white noises[J]. Chin. Phys., 2005, 14(9): 1766 -1769 .
[10] Cheng Xin-Lu, Yang Xiang-Dong, Shao Ju-Xiang, He Bi. The evaluation of bond dissociation energies for NO2 scission in nitro compounds using density functional and complete basis set methods[J]. Chin. Phys., 2006, 15(2): 329 -333 .